Array LDPC Code-based Compressive Sensing

M. Lotfi, M. Vidyasagar
{"title":"Array LDPC Code-based Compressive Sensing","authors":"M. Lotfi, M. Vidyasagar","doi":"10.1109/ALLERTON.2018.8635990","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the problem of compressive sensing using binary measurement matrices, and basis pursuit as the recovery algorithm. We obtain new lower bounds on the number of samples to achieve robust sparse recovery using binary matrices and derive sufficient conditions for a binary matrix with fixed column-weight to satisfy the robust null space property. Next we prove that any column-regular binary matrix with girth 6 has nearly optimal number of measurements. Then we show that the parity check matrices of array LDPC codes are nearly optimal in the sense of having girth six and almost satisfying the lower bound on the number of samples. Array code parity check matrices demonstrate an example of binary matrices that achieve guaranteed recovery via robust null-space property and in practice for $n \\leq 10^{6}$ provide faster recovery compared to the Gaussian counterpart. This is an extended abstract without proofs. The full paper with additional details can be found in [1].","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on the problem of compressive sensing using binary measurement matrices, and basis pursuit as the recovery algorithm. We obtain new lower bounds on the number of samples to achieve robust sparse recovery using binary matrices and derive sufficient conditions for a binary matrix with fixed column-weight to satisfy the robust null space property. Next we prove that any column-regular binary matrix with girth 6 has nearly optimal number of measurements. Then we show that the parity check matrices of array LDPC codes are nearly optimal in the sense of having girth six and almost satisfying the lower bound on the number of samples. Array code parity check matrices demonstrate an example of binary matrices that achieve guaranteed recovery via robust null-space property and in practice for $n \leq 10^{6}$ provide faster recovery compared to the Gaussian counterpart. This is an extended abstract without proofs. The full paper with additional details can be found in [1].
基于阵列LDPC码的压缩感知
本文主要研究了基于二值测量矩阵的压缩感知问题,并以基追踪作为恢复算法。给出了利用二值矩阵实现鲁棒稀疏恢复的新样本数下界,并给出了固定列权二值矩阵满足鲁棒零空间性质的充分条件。其次,我们证明了任何周长为6的列正则二元矩阵都具有近似最优的测度数。然后,我们证明了阵列LDPC码的奇偶校验矩阵在周长为6的意义上几乎是最优的,并且几乎满足样本数的下界。数组代码奇偶校验矩阵演示了一个二进制矩阵的例子,它通过鲁棒的零空间特性实现了保证恢复,并且在$n \leq 10^{6}$的实践中,与高斯矩阵相比,它提供了更快的恢复。这是一个没有证明的扩展摘要。全文及附加细节见[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信