Ziyu Zhao, Xingyu Shen, L. Lan, Xiaoyao Yin, Xiang Zhang, Yonggang Che, Zhigang Luo
{"title":"Density-Attentive Head Detector for Crowd Counting","authors":"Ziyu Zhao, Xingyu Shen, L. Lan, Xiaoyao Yin, Xiang Zhang, Yonggang Che, Zhigang Luo","doi":"10.1109/ICDSBA48748.2019.00030","DOIUrl":null,"url":null,"abstract":"In crowd counting, regression-based method shows better performance in extreme density scenes by introduces a density map. However, the regression-based method fails to locate the positions of each head, which significantly restricts its applications. Detection-based method counts each head with their accurate locations but works only in middle or low-level density scenes. In this paper, a joint learning method, named Density-attentive Head Detector (DAHD) is developed to overcome their respective shortcomings via a multi-task training procedure. Specifically, to guarantee the sensitivity of the detector to small or partially occluded heads, we carefully equip the detector with a density map which learned from regression module. Moreover, a novel Dilated Feature Pyramid Network (DFPN) is introduced to our method to enlarge the receptive field of convolutional kernel, bringing confirmative additional benefits to identify small heads. Experiments on the popular ShanghaiTech and Mall datasets confirm the improved performance of DAHD compared with the current detectionbased approaches, and a comparable performance to regression-based approaches in term of counting.","PeriodicalId":382429,"journal":{"name":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","volume":"1949 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA48748.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In crowd counting, regression-based method shows better performance in extreme density scenes by introduces a density map. However, the regression-based method fails to locate the positions of each head, which significantly restricts its applications. Detection-based method counts each head with their accurate locations but works only in middle or low-level density scenes. In this paper, a joint learning method, named Density-attentive Head Detector (DAHD) is developed to overcome their respective shortcomings via a multi-task training procedure. Specifically, to guarantee the sensitivity of the detector to small or partially occluded heads, we carefully equip the detector with a density map which learned from regression module. Moreover, a novel Dilated Feature Pyramid Network (DFPN) is introduced to our method to enlarge the receptive field of convolutional kernel, bringing confirmative additional benefits to identify small heads. Experiments on the popular ShanghaiTech and Mall datasets confirm the improved performance of DAHD compared with the current detectionbased approaches, and a comparable performance to regression-based approaches in term of counting.