C. Fatichah, Muhammad Fadhlan Min Robby, S. Hidayati, T. Mustaqim
{"title":"Detection of Covid-19 Based on Lung Ultrasound Image Using Convolutional Neural Network Architectures","authors":"C. Fatichah, Muhammad Fadhlan Min Robby, S. Hidayati, T. Mustaqim","doi":"10.1109/ISRITI54043.2021.9702780","DOIUrl":null,"url":null,"abstract":"The spread of Covid-19 is so fast that it has become a global pandemic. A fast, cheap, and guaranteed Covid-19 detection system is needed. Medical images such as CT scans and X-rays with biological sciences and deep learning techniques can be critical diagnostic tools. This study uses ultrasound images as an alternative to medical images that can diagnose Covid-19 using a deep learning method based on the Convolutional Neural Network (CNN) architectures. The dataset used is obtained from the Covid-19 Lung Ultrasound. This study shows the highest accuracy of detection covid-19 based on a lung ultrasound image using the VGG16 architecture compared to ResNet50 and InceptionV3architectures. VGG16 architecture with an Adam optimization and a learning rate of 0.0001 yielded 86% accuracy. ResNet50 and InceptionV3architectures produce 79% and 64% of accuracy.","PeriodicalId":156265,"journal":{"name":"2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI54043.2021.9702780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The spread of Covid-19 is so fast that it has become a global pandemic. A fast, cheap, and guaranteed Covid-19 detection system is needed. Medical images such as CT scans and X-rays with biological sciences and deep learning techniques can be critical diagnostic tools. This study uses ultrasound images as an alternative to medical images that can diagnose Covid-19 using a deep learning method based on the Convolutional Neural Network (CNN) architectures. The dataset used is obtained from the Covid-19 Lung Ultrasound. This study shows the highest accuracy of detection covid-19 based on a lung ultrasound image using the VGG16 architecture compared to ResNet50 and InceptionV3architectures. VGG16 architecture with an Adam optimization and a learning rate of 0.0001 yielded 86% accuracy. ResNet50 and InceptionV3architectures produce 79% and 64% of accuracy.