A class of bridges of iterated integrals of Brownian motion related to various boundary value problems involving the one-dimensional polyharmonic operator

A. Lachal
{"title":"A class of bridges of iterated integrals of Brownian motion related to various boundary value problems involving the one-dimensional polyharmonic operator","authors":"A. Lachal","doi":"10.1155/2011/762486","DOIUrl":null,"url":null,"abstract":"Let (𝐵(𝑡))𝑡∈[0,1] be the linear Brownian motion and (𝑋𝑛(𝑡))𝑡∈[0,1] the (𝑛−1)-fold integral of Brownian motion, with 𝑛 being a positive integer: 𝑋𝑛∫(𝑡)=𝑡0((𝑡−𝑠)𝑛−1/(𝑛−1)!)d𝐵(𝑠) for any 𝑡∈[0,1]. In this paper we construct several bridges between times 0 and 1 of the process (𝑋𝑛(𝑡))𝑡∈[0,1] involving conditions on the successive derivatives of 𝑋𝑛 at times 0 and 1. For this family of bridges, we make a correspondence with certain boundary value problems related to the one-dimensional polyharmonic operator. We also study the classical problem of prediction. Our results involve various Hermite interpolation polynomials.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/762486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let (𝐵(𝑡))𝑡∈[0,1] be the linear Brownian motion and (𝑋𝑛(𝑡))𝑡∈[0,1] the (𝑛−1)-fold integral of Brownian motion, with 𝑛 being a positive integer: 𝑋𝑛∫(𝑡)=𝑡0((𝑡−𝑠)𝑛−1/(𝑛−1)!)d𝐵(𝑠) for any 𝑡∈[0,1]. In this paper we construct several bridges between times 0 and 1 of the process (𝑋𝑛(𝑡))𝑡∈[0,1] involving conditions on the successive derivatives of 𝑋𝑛 at times 0 and 1. For this family of bridges, we make a correspondence with certain boundary value problems related to the one-dimensional polyharmonic operator. We also study the classical problem of prediction. Our results involve various Hermite interpolation polynomials.
一类涉及一维多谐算子的各种边值问题的布朗运动的迭代积分桥
让(𝐵(𝑡)𝑡∈[0,1]的线性布朗运动和(𝑋𝑛(𝑡))𝑡∈[0,1](𝑛−1)倍积分的布朗运动,𝑛是一个正整数:𝑋𝑛∫(𝑡)=𝑡0((𝑡−𝑠)𝑛−1 /(𝑛−1)!)d𝐵(𝑠)任何𝑡∈[0,1]。在本文中,我们在(𝑋𝑛(𝑡))𝑡∈[0,1]的过程(𝑋𝑛(𝑡))的0次和1次之间构建了几个桥梁,其中涉及到𝑋𝑛在0次和1次的连续导数的条件。对于这类桥,我们与一维多谐算子的某些边值问题进行了对应。我们还研究了经典的预测问题。我们的结果涉及各种埃尔米特插值多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信