Group-sparse adaptive variational Bayes estimation

K. Themelis, A. Rontogiannis, K. Koutroumbas
{"title":"Group-sparse adaptive variational Bayes estimation","authors":"K. Themelis, A. Rontogiannis, K. Koutroumbas","doi":"10.5281/ZENODO.44041","DOIUrl":null,"url":null,"abstract":"This paper presents a new variational Bayes algorithm for the adaptive estimation of signals possessing group structured sparsity. The proposed algorithm can be considered as an extension of a recently proposed variational Bayes framework of adaptive algorithms that utilize heavy tailed priors (such as the Student-t distribution) to impose sparsity. Variational inference is efficiently implemented via appropriate time recursive equations for all model parameters. Experimental results are provided that demonstrate the improved estimation performance of the proposed adaptive group sparse variational Bayes method, when compared to state-of-the-art sparse adaptive algorithms.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a new variational Bayes algorithm for the adaptive estimation of signals possessing group structured sparsity. The proposed algorithm can be considered as an extension of a recently proposed variational Bayes framework of adaptive algorithms that utilize heavy tailed priors (such as the Student-t distribution) to impose sparsity. Variational inference is efficiently implemented via appropriate time recursive equations for all model parameters. Experimental results are provided that demonstrate the improved estimation performance of the proposed adaptive group sparse variational Bayes method, when compared to state-of-the-art sparse adaptive algorithms.
群稀疏自适应变分贝叶斯估计
提出了一种新的变分贝叶斯算法,用于自适应估计具有群结构稀疏性的信号。所提出的算法可以被认为是最近提出的自适应算法变分贝叶斯框架的扩展,该框架利用重尾先验(如Student-t分布)来施加稀疏性。通过适当的时间递归方程对所有模型参数有效地实现变分推理。实验结果表明,与现有的稀疏自适应算法相比,所提出的自适应群稀疏变分贝叶斯方法的估计性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信