Virtual wires: overcoming pin limitations in FPGA-based logic emulators

J. Babb, R. Tessier, A. Agarwal
{"title":"Virtual wires: overcoming pin limitations in FPGA-based logic emulators","authors":"J. Babb, R. Tessier, A. Agarwal","doi":"10.1109/FPGA.1993.279469","DOIUrl":null,"url":null,"abstract":"Existing FPGA-based logic emulators only use a fraction of potential communication bandwidth because they dedicate each FPGA pin (physical wire) to a single emulated signal (logical wire). Virtual wires overcome pin limitations by intelligently multiplexing each physical wire among multiple logical wires and pipelining these connections at the maximum clocking frequency of the FPGA. A virtual wire represents a connection from a logical output on one FPGA to a logical input on another FPGA. Virtual wires not only increase usable bandwidth, but also relax the absolute limits imposed on gate utilization. The resulting improvement in bandwidth reduces the need for global interconnect, allowing effective use of low dimension inter-chip connections (such as nearest-neighbor). Nearest-neighbor topologies, coupled with the ability of virtual wires to overlap communication with computation, can even improve emulation speeds. The authors present the concept of virtual wires and describe their first implementation, a 'softwire' compiler which utilizes static routing and relies on minimal hardware support. Results from compiling netlists for the 18 K gate Sparcle microprocessor and the 86 K gate Alewife Communications and Cache Controller indicate that virtual wires can increase FPGA gate utilization beyond 80 percent without a significant slowdown in emulation speed.<<ETX>>","PeriodicalId":104383,"journal":{"name":"[1993] Proceedings IEEE Workshop on FPGAs for Custom Computing Machines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings IEEE Workshop on FPGAs for Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.1993.279469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192

Abstract

Existing FPGA-based logic emulators only use a fraction of potential communication bandwidth because they dedicate each FPGA pin (physical wire) to a single emulated signal (logical wire). Virtual wires overcome pin limitations by intelligently multiplexing each physical wire among multiple logical wires and pipelining these connections at the maximum clocking frequency of the FPGA. A virtual wire represents a connection from a logical output on one FPGA to a logical input on another FPGA. Virtual wires not only increase usable bandwidth, but also relax the absolute limits imposed on gate utilization. The resulting improvement in bandwidth reduces the need for global interconnect, allowing effective use of low dimension inter-chip connections (such as nearest-neighbor). Nearest-neighbor topologies, coupled with the ability of virtual wires to overlap communication with computation, can even improve emulation speeds. The authors present the concept of virtual wires and describe their first implementation, a 'softwire' compiler which utilizes static routing and relies on minimal hardware support. Results from compiling netlists for the 18 K gate Sparcle microprocessor and the 86 K gate Alewife Communications and Cache Controller indicate that virtual wires can increase FPGA gate utilization beyond 80 percent without a significant slowdown in emulation speed.<>
虚拟导线:克服基于fpga的逻辑仿真器的引脚限制
现有的基于FPGA的逻辑仿真器只使用潜在通信带宽的一小部分,因为它们将每个FPGA引脚(物理线)专用于单个仿真信号(逻辑线)。虚拟线通过在多个逻辑线之间智能地复用每个物理线,并在FPGA的最大时钟频率下将这些连接流水线化,从而克服了引脚限制。虚拟线表示从一个FPGA上的逻辑输出到另一个FPGA上的逻辑输入的连接。虚拟线不仅增加了可用带宽,而且放松了对栅极利用率的绝对限制。由此产生的带宽改进减少了对全局互连的需求,允许有效地使用低维芯片间连接(例如最近邻)。最近邻拓扑,再加上虚拟线路将通信与计算重叠的能力,甚至可以提高仿真速度。作者提出了虚拟线的概念,并描述了他们的第一个实现,一个“软线”编译器,它利用静态路由并依赖于最小的硬件支持。编译18k门Sparcle微处理器和86k门Alewife通信和缓存控制器的网络列表的结果表明,虚拟线可以将FPGA门利用率提高80%以上,而不会显着降低仿真速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信