A Geometric Convolutional Neural Network for 3D Object Detection

Yawen Lu, Qianyu Guo, G. Lu
{"title":"A Geometric Convolutional Neural Network for 3D Object Detection","authors":"Yawen Lu, Qianyu Guo, G. Lu","doi":"10.1109/GlobalSIP45357.2019.8969077","DOIUrl":null,"url":null,"abstract":"We propose a method for accurate 3D vehicle detection based on geometric deep neural networks. From only a single RGB image, the framework is able to recover the 3D positions and predict 3D bounding boxes. In particular, the algorithm leverages single image depth estimation and semantic segmentation to produce 3D point cloud for specific objects. By geometrically constraining the object dimensions, an accurate and stable 3D bounding box which tightly fits into the real object can be estimated. We verify the effectiveness and robustness of our method by comparing with other recent state-of-art methods on the challenging KITTI 3D benchmark dataset as well as synthetic Virtual KITTI dataset. Without requiring ground truth 3D labels, our method is able to produce competitive and robust performance in 3D scene understanding and detection.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a method for accurate 3D vehicle detection based on geometric deep neural networks. From only a single RGB image, the framework is able to recover the 3D positions and predict 3D bounding boxes. In particular, the algorithm leverages single image depth estimation and semantic segmentation to produce 3D point cloud for specific objects. By geometrically constraining the object dimensions, an accurate and stable 3D bounding box which tightly fits into the real object can be estimated. We verify the effectiveness and robustness of our method by comparing with other recent state-of-art methods on the challenging KITTI 3D benchmark dataset as well as synthetic Virtual KITTI dataset. Without requiring ground truth 3D labels, our method is able to produce competitive and robust performance in 3D scene understanding and detection.
三维物体检测的几何卷积神经网络
提出了一种基于几何深度神经网络的三维车辆精确检测方法。仅从单个RGB图像中,该框架就可以恢复3D位置并预测3D边界框。特别是,该算法利用单幅图像深度估计和语义分割来生成特定对象的三维点云。通过几何约束物体的尺寸,可以估计出一个精确、稳定、与真实物体紧密贴合的三维边界框。通过在具有挑战性的KITTI 3D基准数据集以及合成的虚拟KITTI数据集上与其他最新的方法进行比较,验证了该方法的有效性和鲁棒性。在不需要地面真实3D标签的情况下,我们的方法能够在3D场景理解和检测中产生具有竞争力和鲁棒性的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信