{"title":"Human Tracking of Single Laser Range Finder Using Features Extracted by Deep Learning","authors":"Yuki Kohara, M. Nakazawa","doi":"10.23919/ICMU48249.2019.9006630","DOIUrl":null,"url":null,"abstract":"Human recognition using single laser range finder (LRF) is utilized for the task of following a target person such as a cargo transport robot. In these recognition methods, the approach is applied in which human-crafted features is inputted to the one-class classification model to identify whether it is a human or not. In this paper, we propose a method that introduce features extracted by deep learning. In this method, we create an encoder that can extract features from input data using PointNet-based autoencoder. In its experiment, the features extracted by encoder is compared with the human-crafted features, and these extraction process length of time is measured.","PeriodicalId":348402,"journal":{"name":"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICMU48249.2019.9006630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Human recognition using single laser range finder (LRF) is utilized for the task of following a target person such as a cargo transport robot. In these recognition methods, the approach is applied in which human-crafted features is inputted to the one-class classification model to identify whether it is a human or not. In this paper, we propose a method that introduce features extracted by deep learning. In this method, we create an encoder that can extract features from input data using PointNet-based autoencoder. In its experiment, the features extracted by encoder is compared with the human-crafted features, and these extraction process length of time is measured.