{"title":"Learning DNF by approximating inclusion-exclusion formulae","authors":"J. Tarui, Tatsuie Tsukiji","doi":"10.1109/CCC.1999.766279","DOIUrl":null,"url":null,"abstract":"We analyze upper and lower bounds on size of Boolean conjunctions necessary and sufficient to approximate a given DNF formula by accuracy slightly better than 1/2 (here we define the size of a Boolean conjunction as the number of distinct variables on which it depends). Such an analysis determines the performance of a naive search algorithm that exhausts Boolean conjunctions in the order of their sizes. In fact, our analysis does not depend on kinds of symmetric functions to be exhausted: instead of conjunctions, counting either disjunctions, parity functions, majority functions, or even general symmetric functions, derives the same learning results from similar analyses.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
We analyze upper and lower bounds on size of Boolean conjunctions necessary and sufficient to approximate a given DNF formula by accuracy slightly better than 1/2 (here we define the size of a Boolean conjunction as the number of distinct variables on which it depends). Such an analysis determines the performance of a naive search algorithm that exhausts Boolean conjunctions in the order of their sizes. In fact, our analysis does not depend on kinds of symmetric functions to be exhausted: instead of conjunctions, counting either disjunctions, parity functions, majority functions, or even general symmetric functions, derives the same learning results from similar analyses.