Learning DNF by approximating inclusion-exclusion formulae

J. Tarui, Tatsuie Tsukiji
{"title":"Learning DNF by approximating inclusion-exclusion formulae","authors":"J. Tarui, Tatsuie Tsukiji","doi":"10.1109/CCC.1999.766279","DOIUrl":null,"url":null,"abstract":"We analyze upper and lower bounds on size of Boolean conjunctions necessary and sufficient to approximate a given DNF formula by accuracy slightly better than 1/2 (here we define the size of a Boolean conjunction as the number of distinct variables on which it depends). Such an analysis determines the performance of a naive search algorithm that exhausts Boolean conjunctions in the order of their sizes. In fact, our analysis does not depend on kinds of symmetric functions to be exhausted: instead of conjunctions, counting either disjunctions, parity functions, majority functions, or even general symmetric functions, derives the same learning results from similar analyses.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We analyze upper and lower bounds on size of Boolean conjunctions necessary and sufficient to approximate a given DNF formula by accuracy slightly better than 1/2 (here we define the size of a Boolean conjunction as the number of distinct variables on which it depends). Such an analysis determines the performance of a naive search algorithm that exhausts Boolean conjunctions in the order of their sizes. In fact, our analysis does not depend on kinds of symmetric functions to be exhausted: instead of conjunctions, counting either disjunctions, parity functions, majority functions, or even general symmetric functions, derives the same learning results from similar analyses.
通过近似包容-排除公式学习DNF
我们分析了布尔连接大小的上界和下界,这是近似给定DNF公式的必要和充分条件,精度略高于1/2(这里我们将布尔连接的大小定义为它所依赖的不同变量的数量)。这样的分析决定了朴素搜索算法的性能,该算法按大小顺序耗尽布尔连词。事实上,我们的分析并不依赖于要耗尽的对称函数的种类:而不是连词,计算析取,宇称函数,多数函数,甚至一般对称函数,从类似的分析中得出相同的学习结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信