An Improved Weighted-Feature Clustering Algorithm for K-anonymity

Lijian Lu, Xiaojun Ye
{"title":"An Improved Weighted-Feature Clustering Algorithm for K-anonymity","authors":"Lijian Lu, Xiaojun Ye","doi":"10.1109/IAS.2009.311","DOIUrl":null,"url":null,"abstract":"Chiu proposed a clustering algorithm adjusting the numeric feature weights automatically for k-anonymity implementation and this approach gave a better clustering quality over the traditional generalization and suppression methods. In this paper, we propose an improved weighted-feature clustering algorithm which takes the weight of categorical attributes and the thesis of optimal k-partition into consideration. To show the effectiveness of our method, we do some information loss experiments to compare it with greedy k-member clustering algorithm.","PeriodicalId":240354,"journal":{"name":"2009 Fifth International Conference on Information Assurance and Security","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Information Assurance and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Chiu proposed a clustering algorithm adjusting the numeric feature weights automatically for k-anonymity implementation and this approach gave a better clustering quality over the traditional generalization and suppression methods. In this paper, we propose an improved weighted-feature clustering algorithm which takes the weight of categorical attributes and the thesis of optimal k-partition into consideration. To show the effectiveness of our method, we do some information loss experiments to compare it with greedy k-member clustering algorithm.
一种改进的k -匿名加权特征聚类算法
Chiu提出了一种自动调整数字特征权重的k-匿名聚类算法,该算法比传统的泛化和抑制方法具有更好的聚类质量。在本文中,我们提出了一种改进的加权特征聚类算法,该算法考虑了分类属性的权重和最优k划分的命题。为了证明该方法的有效性,我们做了一些信息丢失实验,将其与贪婪k成员聚类算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信