Gender classification of subjects from cerebral blood flow changes using Deep Learning

T. Hiroyasu, K. Hanawa, U. Yamamoto
{"title":"Gender classification of subjects from cerebral blood flow changes using Deep Learning","authors":"T. Hiroyasu, K. Hanawa, U. Yamamoto","doi":"10.1109/CIDM.2014.7008672","DOIUrl":null,"url":null,"abstract":"In this study, using Deep Learning, the gender of subjects is classified the cerebral blood flow changes that are measured by fNIRS. It is reported that cerebral blood flow changes are triggered by brain activities. Thus, if this classification has a high searching accuracy, gender classification should be related to brain activities. In the experiment, fNIRS data are derived from subjects who perform a memory task in white noise environment. From the results, it is confirmed that the learning classifier exhibits high accuracy. This fact suggests that there exists a relation between cerebral blood flow changes and biological information.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this study, using Deep Learning, the gender of subjects is classified the cerebral blood flow changes that are measured by fNIRS. It is reported that cerebral blood flow changes are triggered by brain activities. Thus, if this classification has a high searching accuracy, gender classification should be related to brain activities. In the experiment, fNIRS data are derived from subjects who perform a memory task in white noise environment. From the results, it is confirmed that the learning classifier exhibits high accuracy. This fact suggests that there exists a relation between cerebral blood flow changes and biological information.
利用深度学习从脑血流变化中对受试者进行性别分类
在本研究中,使用深度学习,通过近红外光谱测量脑血流变化,对受试者的性别进行分类。据报道,脑血流的变化是由大脑活动引发的。因此,如果这种分类具有较高的搜索准确率,那么性别分类应该与大脑活动有关。在实验中,近红外光谱数据来源于在白噪声环境下执行记忆任务的受试者。结果表明,该学习分类器具有较高的准确率。这一事实表明,脑血流变化与生物信息之间存在联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信