Florbetapir Image Analysis for Alzheimer's Disease Diagnosis

I. Sahumbaiev, A. Popov, N. Ivanushkina, J. Ramírez, J. Górriz
{"title":"Florbetapir Image Analysis for Alzheimer's Disease Diagnosis","authors":"I. Sahumbaiev, A. Popov, N. Ivanushkina, J. Ramírez, J. Górriz","doi":"10.1109/ELNANO.2018.8477516","DOIUrl":null,"url":null,"abstract":"Over decades Alzheimer's disease (AD) remains without decent cure, and only disease-modifying methods are available. This paper is devoted to the analysis of amyloid-PET images with florbetapir (18F-AV-45) tracer to detect the presence of AD or Mild Cognitive Impairment (MCI). The first part of the article dedicated to image processing pipeline, specifically, spacial normalisation and feature extraction. The second part is devoted to the development of the multiclass classifier with deep learning methods. In particular, deep neural network was developed to distinguish three stages: health control (HC), MCI and AD. After tuning and training a neural network, the final specificity of 78% and sensitivity of 90% has been achieved.","PeriodicalId":269665,"journal":{"name":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO.2018.8477516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Over decades Alzheimer's disease (AD) remains without decent cure, and only disease-modifying methods are available. This paper is devoted to the analysis of amyloid-PET images with florbetapir (18F-AV-45) tracer to detect the presence of AD or Mild Cognitive Impairment (MCI). The first part of the article dedicated to image processing pipeline, specifically, spacial normalisation and feature extraction. The second part is devoted to the development of the multiclass classifier with deep learning methods. In particular, deep neural network was developed to distinguish three stages: health control (HC), MCI and AD. After tuning and training a neural network, the final specificity of 78% and sensitivity of 90% has been achieved.
Florbetapir图像分析在阿尔茨海默病诊断中的应用
几十年来,阿尔茨海默病(AD)仍然没有像样的治疗方法,只有改善疾病的方法可用。本文研究了florbetapir (18F-AV-45)示踪剂对淀粉样蛋白pet图像的分析,以检测AD或轻度认知障碍(MCI)的存在。文章的第一部分专门介绍了流水线图像处理,具体来说,是空间归一化和特征提取。第二部分研究了基于深度学习方法的多类分类器的开发。特别是,深度神经网络的发展,以区分三个阶段:健康控制(HC), MCI和AD。经过神经网络的调整和训练,最终实现了78%的特异性和90%的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信