FastLane: making short flows shorter with agile drop notification

David Zats, A. Iyer, G. Ananthanarayanan, R. Agarwal, R. Katz, I. Stoica, Amin Vahdat
{"title":"FastLane: making short flows shorter with agile drop notification","authors":"David Zats, A. Iyer, G. Ananthanarayanan, R. Agarwal, R. Katz, I. Stoica, Amin Vahdat","doi":"10.1145/2806777.2806852","DOIUrl":null,"url":null,"abstract":"The drive towards richer and more interactive web content places increasingly stringent requirements on datacenter network performance. Applications running atop these networks typically partition an incoming query into multiple subqueries, and generate the final result by aggregating the responses for these subqueries. As a result, a large fraction --- as high as 80% --- of the network flows in such workloads are short and latency-sensitive. The speed with which existing networks respond to packet drops limits their ability to meet high-percentile flow completion time SLOs. Indirect notifications indicating packet drops (e.g., duplicates in an end-to-end acknowledgement sequence) are an important limitation to the agility of response to packet drops. This paper proposes FastLane, an in-network drop notification mechanism. FastLane enhances switches to send high-priority drop notifications to sources, thus informing sources as quickly as possible. Consequently, sources can retransmit packets sooner and throttle transmission rates earlier, thus reducing high-percentile flow completion times. We demonstrate, through simulation and implementation, that FastLane reduces 99.9th percentile completion times of short flows by up to 81%. These benefits come at minimal cost --- safeguards ensure that FastLane consume no more than 1% of bandwidth and 2.5% of buffers.","PeriodicalId":275158,"journal":{"name":"Proceedings of the Sixth ACM Symposium on Cloud Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806777.2806852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The drive towards richer and more interactive web content places increasingly stringent requirements on datacenter network performance. Applications running atop these networks typically partition an incoming query into multiple subqueries, and generate the final result by aggregating the responses for these subqueries. As a result, a large fraction --- as high as 80% --- of the network flows in such workloads are short and latency-sensitive. The speed with which existing networks respond to packet drops limits their ability to meet high-percentile flow completion time SLOs. Indirect notifications indicating packet drops (e.g., duplicates in an end-to-end acknowledgement sequence) are an important limitation to the agility of response to packet drops. This paper proposes FastLane, an in-network drop notification mechanism. FastLane enhances switches to send high-priority drop notifications to sources, thus informing sources as quickly as possible. Consequently, sources can retransmit packets sooner and throttle transmission rates earlier, thus reducing high-percentile flow completion times. We demonstrate, through simulation and implementation, that FastLane reduces 99.9th percentile completion times of short flows by up to 81%. These benefits come at minimal cost --- safeguards ensure that FastLane consume no more than 1% of bandwidth and 2.5% of buffers.
FastLane:通过灵活的掉落通知缩短短流程
对更丰富和更具交互性的web内容的追求对数据中心网络性能提出了越来越严格的要求。运行在这些网络之上的应用程序通常将传入查询划分为多个子查询,并通过聚合这些子查询的响应来生成最终结果。因此,在这种工作负载中,很大一部分(高达80%)的网络流都很短,并且对延迟敏感。现有网络对丢包的响应速度限制了它们满足高百分位数流完成时间slo的能力。指示丢包的间接通知(例如,端到端确认序列中的重复)是对丢包响应敏捷性的重要限制。本文提出了一种网络内丢包通知机制FastLane。FastLane增强了交换机向源发送高优先级丢弃通知,从而尽可能快地通知源。因此,源可以更快地重传数据包并更早地限制传输速率,从而减少高百分位数流完成时间。通过模拟和实现,我们证明,FastLane将短流完井时间缩短了99.9%,最多可缩短81%。这些好处的成本最低——安全措施确保FastLane消耗的带宽不超过1%,缓冲不超过2.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信