Comparison on Performance of Adaptive Algorithms for Eye Blinks Removal in Electroencephalogram

F. A. Rahman, M. Othman, M. R. Hamzah
{"title":"Comparison on Performance of Adaptive Algorithms for Eye Blinks Removal in Electroencephalogram","authors":"F. A. Rahman, M. Othman, M. R. Hamzah","doi":"10.1109/ICCCE.2018.8539290","DOIUrl":null,"url":null,"abstract":"The interference of eye blink artifacts can cause serious distortion to electroencephalogram (EEG) which could bias the signal interpretation and reduce the classification accuracy in a brain-computer interface (BCI) application. To overcome this problem, an algorithm to automatically detect and remove the artifacts from EEG signals is highly desirable. One of the methods that can be applied for automatic artifacts removal is adaptive filtering through an adaptive noise cancellation (ANC) system. In this paper, we compare the performance of three adaptive algorithms; namely LMS, RLS, and ANFIS, in removing the eye blink from EEG signals. To evaluate the results, the SNR, MSE and correlation coefficient values are calculated based on the results obtained by using one of the widely used methods for blinks removal, independent component analysis (ICA). The results show that RLS algorithm provides the best performance when comparing with the ICA method.","PeriodicalId":260264,"journal":{"name":"2018 7th International Conference on Computer and Communication Engineering (ICCCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Computer and Communication Engineering (ICCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCE.2018.8539290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The interference of eye blink artifacts can cause serious distortion to electroencephalogram (EEG) which could bias the signal interpretation and reduce the classification accuracy in a brain-computer interface (BCI) application. To overcome this problem, an algorithm to automatically detect and remove the artifacts from EEG signals is highly desirable. One of the methods that can be applied for automatic artifacts removal is adaptive filtering through an adaptive noise cancellation (ANC) system. In this paper, we compare the performance of three adaptive algorithms; namely LMS, RLS, and ANFIS, in removing the eye blink from EEG signals. To evaluate the results, the SNR, MSE and correlation coefficient values are calculated based on the results obtained by using one of the widely used methods for blinks removal, independent component analysis (ICA). The results show that RLS algorithm provides the best performance when comparing with the ICA method.
脑电图中眨眼去除自适应算法的性能比较
在脑机接口(BCI)应用中,眨眼伪影的干扰会造成严重的脑电图失真,从而影响信号的解释,降低分类精度。为了克服这一问题,一种自动检测和去除脑电信号伪影的算法是非常必要的。其中一种可用于自动去除伪影的方法是通过自适应噪声消除(ANC)系统进行自适应滤波。本文比较了三种自适应算法的性能;即LMS, RLS和ANFIS,从脑电图信号中去除眨眼。为了对结果进行评价,基于使用一种广泛使用的眨眼去除方法——独立分量分析(ICA)获得的结果计算信噪比、MSE和相关系数值。结果表明,与ICA方法相比,RLS算法具有最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信