Estimating mutual information on data streams

F. Keller, Emmanuel Müller, Klemens Böhm
{"title":"Estimating mutual information on data streams","authors":"F. Keller, Emmanuel Müller, Klemens Böhm","doi":"10.1145/2791347.2791348","DOIUrl":null,"url":null,"abstract":"Mutual information is a well-established and broadly used concept in information theory. It allows to quantify the mutual dependence between two variables -- an essential task in data analysis. For static data, a broad range of techniques addresses the problem of estimating mutual information. However, the assumption of static data is not applicable for today's dynamic data sources such as data streams: In contrast to static approaches, an online estimator must be able to deal with the evolving, changing, and infinite nature of the stream. Furthermore, some tasks require the estimation to be available online while processing the raw data stream. Our proposed solution Mise (Mutual Information Stream Estimation) allows a user to issue mutual information queries in arbitrary time windows. As a key feature, we introduce a novel sampling scheme, which ensures an equal treatment of queries over multiple time scales, e.g., ranging from milliseconds up to decades. We thoroughly analyze the requirements of such a multiscale sampling scheme, and evaluate the resulting quality of Mise in a broad range of experiments.","PeriodicalId":225179,"journal":{"name":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791347.2791348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Mutual information is a well-established and broadly used concept in information theory. It allows to quantify the mutual dependence between two variables -- an essential task in data analysis. For static data, a broad range of techniques addresses the problem of estimating mutual information. However, the assumption of static data is not applicable for today's dynamic data sources such as data streams: In contrast to static approaches, an online estimator must be able to deal with the evolving, changing, and infinite nature of the stream. Furthermore, some tasks require the estimation to be available online while processing the raw data stream. Our proposed solution Mise (Mutual Information Stream Estimation) allows a user to issue mutual information queries in arbitrary time windows. As a key feature, we introduce a novel sampling scheme, which ensures an equal treatment of queries over multiple time scales, e.g., ranging from milliseconds up to decades. We thoroughly analyze the requirements of such a multiscale sampling scheme, and evaluate the resulting quality of Mise in a broad range of experiments.
估计数据流上的互信息
互信息是信息论中一个被广泛使用的概念。它可以量化两个变量之间的相互依赖性——这是数据分析中的一项基本任务。对于静态数据,广泛的技术解决了估计互信息的问题。然而,静态数据的假设不适用于今天的动态数据源,如数据流:与静态方法相比,在线估计器必须能够处理流的演化、变化和无限性质。此外,有些任务需要在处理原始数据流时在线提供评估。我们提出的方案Mise(互信息流估计)允许用户在任意时间窗口内发出互信息查询。作为一个关键特征,我们引入了一种新的采样方案,它确保在多个时间尺度上(例如,从毫秒到几十年)对查询进行平等处理。我们深入分析了这种多尺度采样方案的要求,并在广泛的实验中评估了结果的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信