Disentangled Speech Representation Learning for One-Shot Cross-Lingual Voice Conversion Using ß-VAE

Hui Lu, Disong Wang, Xixin Wu, Zhiyong Wu, Xunying Liu, Helen M. Meng
{"title":"Disentangled Speech Representation Learning for One-Shot Cross-Lingual Voice Conversion Using ß-VAE","authors":"Hui Lu, Disong Wang, Xixin Wu, Zhiyong Wu, Xunying Liu, Helen M. Meng","doi":"10.1109/SLT54892.2023.10022787","DOIUrl":null,"url":null,"abstract":"We propose an unsupervised learning method to disentangle speech into content representation and speaker identity representation. We apply this method to the challenging one-shot cross-lingual voice conversion task to demonstrate the effectiveness of the disentanglement. Inspired by ß- VAE, we introduce a learning objective that balances between the information captured by the content and speaker representations. In addition, the inductive biases from the architectural design and the training dataset further encourage the desired disentanglement. Both objective and subjective evaluations show the effectiveness of the proposed method in speech disentanglement and in one-shot cross-lingual voice conversion.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an unsupervised learning method to disentangle speech into content representation and speaker identity representation. We apply this method to the challenging one-shot cross-lingual voice conversion task to demonstrate the effectiveness of the disentanglement. Inspired by ß- VAE, we introduce a learning objective that balances between the information captured by the content and speaker representations. In addition, the inductive biases from the architectural design and the training dataset further encourage the desired disentanglement. Both objective and subjective evaluations show the effectiveness of the proposed method in speech disentanglement and in one-shot cross-lingual voice conversion.
基于ß-VAE的单次跨语言语音转换解纠缠语音表示学习
我们提出了一种无监督学习方法,将语音分解为内容表征和说话人身份表征。我们将该方法应用于具有挑战性的一次性跨语言语音转换任务,以证明解纠缠的有效性。受ß- VAE的启发,我们引入了一个学习目标,在内容捕获的信息和说话者表示之间取得平衡。此外,来自架构设计和训练数据集的归纳偏差进一步鼓励期望的解纠缠。客观评价和主观评价均表明了该方法在语音解纠缠和一次性跨语言语音转换方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信