An Ensemble Model using Face and Pose Tracking for Engagement Detection in Game-based Rehabilitation

Xujie Lin, Siqi Cai, P. Chan, Longhan Xie
{"title":"An Ensemble Model using Face and Pose Tracking for Engagement Detection in Game-based Rehabilitation","authors":"Xujie Lin, Siqi Cai, P. Chan, Longhan Xie","doi":"10.1145/3590003.3590085","DOIUrl":null,"url":null,"abstract":"Highly engaging rehabilitation promotes functional reorganization of the brain in stroke patients. Engagement detection in game-based rehabilitation can help rehabilitation practitioners get real-time feedback, and then provide patients with appropriate training programs. Previous research on engagement detection has focused on wearable devices, and the complicated laboratory setup makes them unsuitable for use in clinics and homes. In this work, we propose a method to automatically extract facial and posture features from camera-captured videos. Then we design an automatic engagement detection model using the facial and posture features as the input. In the dataset of engagement in virtual game rehabilitation scenarios, our model detects engagement levels with an average accuracy of 96.85%, achieving remarkable performance. This study sheds new light on engagement detection for stroke patients in clinical applications.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Highly engaging rehabilitation promotes functional reorganization of the brain in stroke patients. Engagement detection in game-based rehabilitation can help rehabilitation practitioners get real-time feedback, and then provide patients with appropriate training programs. Previous research on engagement detection has focused on wearable devices, and the complicated laboratory setup makes them unsuitable for use in clinics and homes. In this work, we propose a method to automatically extract facial and posture features from camera-captured videos. Then we design an automatic engagement detection model using the facial and posture features as the input. In the dataset of engagement in virtual game rehabilitation scenarios, our model detects engagement levels with an average accuracy of 96.85%, achieving remarkable performance. This study sheds new light on engagement detection for stroke patients in clinical applications.
一种基于人脸和姿态跟踪的集成模型用于基于游戏的康复中参与检测
高度参与的康复促进脑卒中患者的功能重组。基于游戏的康复参与检测可以帮助康复从业者获得实时反馈,然后为患者提供适当的训练方案。先前对接触检测的研究主要集中在可穿戴设备上,复杂的实验室设置使得它们不适合在诊所和家庭中使用。在这项工作中,我们提出了一种从摄像机拍摄的视频中自动提取面部和姿势特征的方法。然后,我们设计了一个以面部和姿态特征为输入的自动交战检测模型。在虚拟游戏康复场景的参与度数据集中,我们的模型检测参与度水平的平均准确率为96.85%,取得了显著的性能。本研究为脑卒中患者敬业度检测的临床应用提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信