{"title":"Safe Testing","authors":"P. Grünwald, R. D. Heide, Wouter M. Koolen","doi":"10.1109/ITA50056.2020.9244948","DOIUrl":null,"url":null,"abstract":"We present a new theory of hypothesis testing. The main concept is the s-value, a notion of evidence which, unlike p-values, allows for effortlessly combining evidence from several tests, even in the common scenario where the decision to perform a new test depends on the previous test outcome: safe tests based on s-values generally preserve Type-I error guarantees under such ‘optional continuation’. S-values exist for completely general testing problems with composite null and alternatives. Their prime interpretation is in terms of gambling or investing, each S-value corresponding to a particular investment. Surprisingly, optimal \"GROW\" S-values, which lead to fastest capital growth, are fully characterized by the joint information projection (JIPr) between the set of all Bayes marginal distributions on ${\\mathcal{H}_0}$ and ${\\mathcal{H}_1}$. Thus, optimal s-values also have an interpretation as Bayes factors, with priors given by the JIPr. We illustrate the theory using two classical testing scenarios: the one-sample t-test and the 2 × 2-contingency table. In the t-test setting, GROW S-values correspond to adopting the right Haar prior on the variance, like in Jeffreys’ Bayesian t-test. However, unlike Jeffreys’, the default safe t-test puts a discrete 2-point prior on the effect size, leading to better behaviour in terms of statistical power. Sharing Fisherian, Neymanian and Jeffreys-Bayesian interpretations, S-values and safe tests may provide a methodology acceptable to adherents of all three schools.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140
Abstract
We present a new theory of hypothesis testing. The main concept is the s-value, a notion of evidence which, unlike p-values, allows for effortlessly combining evidence from several tests, even in the common scenario where the decision to perform a new test depends on the previous test outcome: safe tests based on s-values generally preserve Type-I error guarantees under such ‘optional continuation’. S-values exist for completely general testing problems with composite null and alternatives. Their prime interpretation is in terms of gambling or investing, each S-value corresponding to a particular investment. Surprisingly, optimal "GROW" S-values, which lead to fastest capital growth, are fully characterized by the joint information projection (JIPr) between the set of all Bayes marginal distributions on ${\mathcal{H}_0}$ and ${\mathcal{H}_1}$. Thus, optimal s-values also have an interpretation as Bayes factors, with priors given by the JIPr. We illustrate the theory using two classical testing scenarios: the one-sample t-test and the 2 × 2-contingency table. In the t-test setting, GROW S-values correspond to adopting the right Haar prior on the variance, like in Jeffreys’ Bayesian t-test. However, unlike Jeffreys’, the default safe t-test puts a discrete 2-point prior on the effect size, leading to better behaviour in terms of statistical power. Sharing Fisherian, Neymanian and Jeffreys-Bayesian interpretations, S-values and safe tests may provide a methodology acceptable to adherents of all three schools.