Performance of Information Gain and PCA Feature Selection for Determining Ripen Susu Banana Fruits

C. Dewi, E. Arisoesilaningsih, W. Mahmudy, Solimun
{"title":"Performance of Information Gain and PCA Feature Selection for Determining Ripen Susu Banana Fruits","authors":"C. Dewi, E. Arisoesilaningsih, W. Mahmudy, Solimun","doi":"10.1109/CyberneticsCom55287.2022.9865623","DOIUrl":null,"url":null,"abstract":"Susu banana fruits has a uniqueness, where is the difference of slightly ripe and ripe susu banana at the ripen stage is perfectly difficult to distinguish visually because both have almost the same yellow color. Therefore, this study performed identification using a fruit image-based computer vision to replace the human visual. The almost similar characteristics of susu banana at slightly ripe, ripe and riper stage were selected to get a dominant character that has a high influence. The ability of information gain (IG) and principal component analysis (PCA) and combined IG-PCA features selection was evaluated to determine the influence of correlation and probability of each feature on each class. Tests were conducted on clean-peeled and spotted peel susu banana with 3 levels of ripeness at the ripen stage to determine the impact of IG, PCA and combined IG-PCA on classification using extreme learning machines. The test results showed that the use of PCA in the clean-peeled with natural curing (group1) and spotted peel with chemicals curing (group3) was better than IG. In the group1, PCA also outperformed combined IG-PCA, but in the group3 the combined use of IG-PCA was better than IG and PCA. Although the use of feature selection at spotted peel with natural curing (group2) was resulted the lower accuracy, overall, the tests showed that the selected of dominant features in the classification could increase the recognition accuracy. The proposed method also proved could be used as an alternative in determining the ripen of susu bananas.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Susu banana fruits has a uniqueness, where is the difference of slightly ripe and ripe susu banana at the ripen stage is perfectly difficult to distinguish visually because both have almost the same yellow color. Therefore, this study performed identification using a fruit image-based computer vision to replace the human visual. The almost similar characteristics of susu banana at slightly ripe, ripe and riper stage were selected to get a dominant character that has a high influence. The ability of information gain (IG) and principal component analysis (PCA) and combined IG-PCA features selection was evaluated to determine the influence of correlation and probability of each feature on each class. Tests were conducted on clean-peeled and spotted peel susu banana with 3 levels of ripeness at the ripen stage to determine the impact of IG, PCA and combined IG-PCA on classification using extreme learning machines. The test results showed that the use of PCA in the clean-peeled with natural curing (group1) and spotted peel with chemicals curing (group3) was better than IG. In the group1, PCA also outperformed combined IG-PCA, but in the group3 the combined use of IG-PCA was better than IG and PCA. Although the use of feature selection at spotted peel with natural curing (group2) was resulted the lower accuracy, overall, the tests showed that the selected of dominant features in the classification could increase the recognition accuracy. The proposed method also proved could be used as an alternative in determining the ripen of susu bananas.
信息增益与PCA特征选择在苏苏香蕉果实成熟判别中的应用
苏苏香蕉果实有一个独特之处,在成熟阶段,微熟和熟苏苏香蕉的区别很难从视觉上区分出来,因为两者的黄色几乎是一样的。因此,本研究使用基于水果图像的计算机视觉来代替人类视觉进行识别。选取苏苏香蕉微熟期、熟期和熟期性状相近的品种,获得影响较大的优势性状。评估信息增益(IG)和主成分分析(PCA)以及IG-PCA联合特征选择的能力,以确定每个特征对每个类别的相关性和概率的影响。以成熟阶段3个成熟度等级的净皮和斑皮susu香蕉为试验对象,利用极限学习机确定IG、PCA和IG-PCA联合对分类的影响。试验结果表明,PCA在自然固化的清洁果皮(group1)和化学固化的斑点果皮(group3)中的应用效果优于IG。在组1中,PCA也优于IG-PCA联合使用,但在组3中,IG-PCA联合使用优于IG和PCA。虽然在自然固化斑点果皮(组2)中使用特征选择导致准确率较低,但总体而言,测试表明在分类中选择优势特征可以提高识别准确率。结果表明,该方法可作为苏苏香蕉成熟度测定的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信