8-Bit gray-scale DTCNN implementation over an FPGA for Robot Guiding algorithm

J. Albó-Canals, J. A. Villasante-Bembibre, J. Riera-Babures, X. Vilasís-Cardona
{"title":"8-Bit gray-scale DTCNN implementation over an FPGA for Robot Guiding algorithm","authors":"J. Albó-Canals, J. A. Villasante-Bembibre, J. Riera-Babures, X. Vilasís-Cardona","doi":"10.1109/CNNA.2010.5430336","DOIUrl":null,"url":null,"abstract":"This paper presents the application of an 8-bit Field Programmable Gate Array (FPGA) implementation of a Discrete Time Cellular Neural Network (DTCNN) suitable for small image gray-scale pre-processing (simple operations with high computational burden). It uses Split & Shift techniques to have a 12 × 12 grid. Reduced grid is necessary because of windowing process is added to process bigger images (NIOSII and peripherical elements occupation consume 4000 logic elements (LE) approximately). The implementation over the FPGA uses I2C interfece to communicate with Lego Mindstorm Device.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the application of an 8-bit Field Programmable Gate Array (FPGA) implementation of a Discrete Time Cellular Neural Network (DTCNN) suitable for small image gray-scale pre-processing (simple operations with high computational burden). It uses Split & Shift techniques to have a 12 × 12 grid. Reduced grid is necessary because of windowing process is added to process bigger images (NIOSII and peripherical elements occupation consume 4000 logic elements (LE) approximately). The implementation over the FPGA uses I2C interfece to communicate with Lego Mindstorm Device.
机器人引导算法的8位灰度DTCNN FPGA实现
本文介绍了应用8位现场可编程门阵列(FPGA)实现适合小图像灰度预处理(操作简单,计算量大)的离散时间细胞神经网络(DTCNN)。它使用分割和移位技术有一个12 × 12的网格。减少网格是必要的,因为增加了窗口处理来处理更大的图像(NIOSII和外围元素占用大约消耗4000个逻辑元素(LE))。通过FPGA实现,采用I2C接口与Lego Mindstorm Device通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信