Advances in Geometrical Analysis of Topologically-Varying Shapes

Anuj Srivastava, Xiaoyang Guo, Hamid Laga
{"title":"Advances in Geometrical Analysis of Topologically-Varying Shapes","authors":"Anuj Srivastava, Xiaoyang Guo, Hamid Laga","doi":"10.1109/ISBIWorkshops50223.2020.9153426","DOIUrl":null,"url":null,"abstract":"Statistical shape analysis using geometrical approaches provides comprehensive tools – such as geodesic deformations, shape averages, and principal modes of variability – all in the original object space. While geometrical methods have been limited to objects with fixed topologies (e.g. functions, closed curves, surfaces of genus zero, etc) in the past, this paper summarizes recent progress where geometrical approaches are beginning to handle topologically different objects – trees, graphs, etc – that exhibit arbitrary branching and connectivity patterns. The key idea is to “divide-and-conquer”, i.e. break complex objects into simpler parts and help register these parts across objects. Such matching and quantification require invariant metrics from Riemannian geometry and provide foundational tools for statistical shape analysis.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Statistical shape analysis using geometrical approaches provides comprehensive tools – such as geodesic deformations, shape averages, and principal modes of variability – all in the original object space. While geometrical methods have been limited to objects with fixed topologies (e.g. functions, closed curves, surfaces of genus zero, etc) in the past, this paper summarizes recent progress where geometrical approaches are beginning to handle topologically different objects – trees, graphs, etc – that exhibit arbitrary branching and connectivity patterns. The key idea is to “divide-and-conquer”, i.e. break complex objects into simpler parts and help register these parts across objects. Such matching and quantification require invariant metrics from Riemannian geometry and provide foundational tools for statistical shape analysis.
拓扑变化形状的几何分析研究进展
使用几何方法的统计形状分析提供了全面的工具——例如测地线变形、形状平均值和主要变异性模式——所有这些都在原始对象空间中。虽然几何方法过去仅限于具有固定拓扑的对象(例如函数,闭曲线,属零曲面等),但本文总结了最近几何方法开始处理拓扑不同的对象(例如树,图等)的进展,这些对象表现出任意分支和连接模式。关键思想是“分而治之”,即将复杂的对象分解成更简单的部分,并帮助跨对象注册这些部分。这种匹配和量化需要黎曼几何中的不变度量,并为统计形状分析提供基础工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信