A discrete Hidden Markov models recognition module for temporal series: Application to real-time 3D hand gestures

Yannick Dennemont, Guillaume Bouyer, S. Otmane, M. Mallem
{"title":"A discrete Hidden Markov models recognition module for temporal series: Application to real-time 3D hand gestures","authors":"Yannick Dennemont, Guillaume Bouyer, S. Otmane, M. Mallem","doi":"10.1109/IPTA.2012.6469509","DOIUrl":null,"url":null,"abstract":"This work studies, implements and evaluates a gestures recognition module based on discrete Hidden Markov Models. The module is implemented on Matlab and used from Virtools. It can be used with different inputs therefore serves different recognition purposes. We focus on the 3D positions, our devices common information, as inputs for gesture recognition. Experiments are realized with an infra-red tracked flystick. Finally, the recognition rate is more than 90% with a personalized learning base. Otherwise, the results are beyond 70%, for an evaluation of 8 users on a real time mini-game. The rates are basically 80% for simple gestures and 60% for complex ones.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This work studies, implements and evaluates a gestures recognition module based on discrete Hidden Markov Models. The module is implemented on Matlab and used from Virtools. It can be used with different inputs therefore serves different recognition purposes. We focus on the 3D positions, our devices common information, as inputs for gesture recognition. Experiments are realized with an infra-red tracked flystick. Finally, the recognition rate is more than 90% with a personalized learning base. Otherwise, the results are beyond 70%, for an evaluation of 8 users on a real time mini-game. The rates are basically 80% for simple gestures and 60% for complex ones.
一个离散的隐马尔可夫模型识别模块的时间序列:应用于实时三维手势
本文研究、实现并评估了一个基于离散隐马尔可夫模型的手势识别模块。该模块是在Matlab上实现的,使用的是Virtools。它可以用于不同的输入,因此服务于不同的识别目的。我们专注于3D位置,我们的设备通用信息,作为手势识别的输入。实验是用红外跟踪飞杆实现的。最后,在个性化学习基础上,识别率达到90%以上。否则,在一款实时迷你游戏中,对8名用户的评估结果将超过70%。简单手势的识别率基本上是80%,复杂手势的识别率是60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信