{"title":"Evaluation of Feature Extraction Methods on Software Cost Estimation","authors":"Burak Turhan, Onur Kutlubay, A. Bener","doi":"10.1109/ESEM.2007.57","DOIUrl":null,"url":null,"abstract":"This research investigates the effects of linear and non-linear feature extraction methods on the cost estimation performance. We use principal component analysis (PCA) and Isomap for extracting new features from observed ones and evaluate these methods with support vector regression (SVR) on publicly available datasets. Our results for these datasets indicate there is no significant difference between the performances of these linear and non-linear feature extraction methods.","PeriodicalId":124420,"journal":{"name":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","volume":"31 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESEM.2007.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This research investigates the effects of linear and non-linear feature extraction methods on the cost estimation performance. We use principal component analysis (PCA) and Isomap for extracting new features from observed ones and evaluate these methods with support vector regression (SVR) on publicly available datasets. Our results for these datasets indicate there is no significant difference between the performances of these linear and non-linear feature extraction methods.