Evaluation of Feature Extraction Methods on Software Cost Estimation

Burak Turhan, Onur Kutlubay, A. Bener
{"title":"Evaluation of Feature Extraction Methods on Software Cost Estimation","authors":"Burak Turhan, Onur Kutlubay, A. Bener","doi":"10.1109/ESEM.2007.57","DOIUrl":null,"url":null,"abstract":"This research investigates the effects of linear and non-linear feature extraction methods on the cost estimation performance. We use principal component analysis (PCA) and Isomap for extracting new features from observed ones and evaluate these methods with support vector regression (SVR) on publicly available datasets. Our results for these datasets indicate there is no significant difference between the performances of these linear and non-linear feature extraction methods.","PeriodicalId":124420,"journal":{"name":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","volume":"31 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESEM.2007.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This research investigates the effects of linear and non-linear feature extraction methods on the cost estimation performance. We use principal component analysis (PCA) and Isomap for extracting new features from observed ones and evaluate these methods with support vector regression (SVR) on publicly available datasets. Our results for these datasets indicate there is no significant difference between the performances of these linear and non-linear feature extraction methods.
特征提取方法在软件成本估算中的评价
本文研究了线性和非线性特征提取方法对成本估计性能的影响。我们使用主成分分析(PCA)和Isomap从观察到的特征中提取新特征,并在公开可用的数据集上使用支持向量回归(SVR)对这些方法进行评估。我们对这些数据集的结果表明,这些线性和非线性特征提取方法的性能没有显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信