Multi-Scale Voxel Class Balanced ASPP for LIDAR Pointcloud Semantic Segmentation

K. Kumar, S. Al-Stouhi
{"title":"Multi-Scale Voxel Class Balanced ASPP for LIDAR Pointcloud Semantic Segmentation","authors":"K. Kumar, S. Al-Stouhi","doi":"10.1109/WACVW52041.2021.00017","DOIUrl":null,"url":null,"abstract":"This paper explores efficient techniques to improve PolarNet model performance to address the real-time semantic segmentation of LiDAR point clouds. The core framework consists of an encoder network, Atrous spatial pyramid pooling (ASPP)/Dense Atrous spatial pyramid pooling (DenseASPP) followed by a decoder network. Encoder extracts multi-scale voxel information in a top-down manner while decoder fuses multiple feature maps from various scales in a bottom-up manner. In between encoder and decoder block, an ASPP/DenseASPP block is inserted to enlarge receptive fields in a very dense manner. In contrast to PolarNet model, we use weighted cross entropy in conjunction with Lovasz-softmax loss to improve segmentation accuracy. Also this paper accelerates training mechanism of PolarNet model by incorporating learning-rate schedulers in conjunction with Adam optimizer for faster convergence with fewer epochs without degrading accuracy. Extensive experiments conducted on challenging SemanticKITTI dataset shows that our high-resolution-grid model obtains competitive state-of-art result of 60.6 mIOU @21fps whereas our low-resolution-grid model obtains 54.01 mIOU @35fps thereby balancing accuracy/speed trade-off.","PeriodicalId":313062,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW52041.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper explores efficient techniques to improve PolarNet model performance to address the real-time semantic segmentation of LiDAR point clouds. The core framework consists of an encoder network, Atrous spatial pyramid pooling (ASPP)/Dense Atrous spatial pyramid pooling (DenseASPP) followed by a decoder network. Encoder extracts multi-scale voxel information in a top-down manner while decoder fuses multiple feature maps from various scales in a bottom-up manner. In between encoder and decoder block, an ASPP/DenseASPP block is inserted to enlarge receptive fields in a very dense manner. In contrast to PolarNet model, we use weighted cross entropy in conjunction with Lovasz-softmax loss to improve segmentation accuracy. Also this paper accelerates training mechanism of PolarNet model by incorporating learning-rate schedulers in conjunction with Adam optimizer for faster convergence with fewer epochs without degrading accuracy. Extensive experiments conducted on challenging SemanticKITTI dataset shows that our high-resolution-grid model obtains competitive state-of-art result of 60.6 mIOU @21fps whereas our low-resolution-grid model obtains 54.01 mIOU @35fps thereby balancing accuracy/speed trade-off.
激光雷达点云语义分割的多尺度体素类平衡ASPP
本文探讨了提高偏振网模型性能的有效技术,以解决激光雷达点云的实时语义分割问题。核心框架由编码器网络、亚特劳斯空间金字塔池(ASPP)/密集亚特劳斯空间金字塔池(DenseASPP)和解码器网络组成。编码器以自上而下的方式提取多尺度体素信息,解码器以自下而上的方式融合多个不同尺度的特征图。在编码器和解码器块之间,插入一个ASPP/DenseASPP块,以非常密集的方式扩大接收域。与PolarNet模型相比,我们使用加权交叉熵结合Lovasz-softmax损失来提高分割精度。通过结合学习率调优器和Adam优化器来加速PolarNet模型的训练机制,在不降低精度的前提下,以更少的epoch更快地收敛。在具有挑战性的SemanticKITTI数据集上进行的大量实验表明,我们的高分辨率网格模型获得了具有竞争力的最新结果60.6 mIOU @21fps,而我们的低分辨率网格模型获得了54.01 mIOU @35fps,从而平衡了精度和速度之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信