Computationally-efficient sparse polynomial interpolation

S. Pawar, Venkatesan N. Ekambaram, K. Ramchandran
{"title":"Computationally-efficient sparse polynomial interpolation","authors":"S. Pawar, Venkatesan N. Ekambaram, K. Ramchandran","doi":"10.1109/IWSDA.2015.7458408","DOIUrl":null,"url":null,"abstract":"We consider the problem of interpolating a high-degree sparse polynomial, where the sparsity is in the number of monomial terms with non-zero coefficients. We propose a probabilistic algorithm that requires only O(k) evaluations of a polynomial with complex coefficients, on the unit circle at specified points and has a complexity O(k log k), where k is the sparsity of the polynomial. Thus the evaluation complexity as well as the computational complexity are independent of the maximum degree n in contrast to existing algorithms in the literature. We extend our algorithm to polynomials defined over the finite field using fast algorithms in the literature to compute discrete logs for certain field sizes.","PeriodicalId":371829,"journal":{"name":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2015.7458408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of interpolating a high-degree sparse polynomial, where the sparsity is in the number of monomial terms with non-zero coefficients. We propose a probabilistic algorithm that requires only O(k) evaluations of a polynomial with complex coefficients, on the unit circle at specified points and has a complexity O(k log k), where k is the sparsity of the polynomial. Thus the evaluation complexity as well as the computational complexity are independent of the maximum degree n in contrast to existing algorithms in the literature. We extend our algorithm to polynomials defined over the finite field using fast algorithms in the literature to compute discrete logs for certain field sizes.
计算效率高的稀疏多项式插值
考虑一个高次稀疏多项式的插值问题,其稀疏性是指系数为非零的单项式项的个数。我们提出了一种概率算法,该算法只需要O(k)个具有复系数的多项式的评估,在单位圆上的指定点上,具有复杂度O(k log k),其中k是多项式的稀疏性。因此,与文献中已有的算法相比,该算法的求值复杂度和计算复杂度与最大度n无关。我们将我们的算法扩展到在有限域上定义的多项式,使用文献中的快速算法来计算特定域大小的离散对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信