Threshold Queries

A. Bonifati, Stefania Dumbrava, G. Fletcher, J. Hidders, Matthias Hofer, W. Martens, Filip Murlak, Joshua Shinavier, S. Staworko, Dominik Tomaszuk
{"title":"Threshold Queries","authors":"A. Bonifati, Stefania Dumbrava, G. Fletcher, J. Hidders, Matthias Hofer, W. Martens, Filip Murlak, Joshua Shinavier, S. Staworko, Dominik Tomaszuk","doi":"10.1145/3604437.3604452","DOIUrl":null,"url":null,"abstract":"Threshold queries are an important class of queries that only require computing or counting answers up to a specified threshold value. To the best of our knowledge, threshold queries have been largely disregarded in the research literature, which is surprising considering how common they are in practice. We explore how such queries appear in practice and present a method that can be used to significantly improve the asymptotic bounds of their state-of-the-art evaluation algorithms. Our experimental evaluation of these methods shows order-of-magnitude performance improvements.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604437.3604452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Threshold queries are an important class of queries that only require computing or counting answers up to a specified threshold value. To the best of our knowledge, threshold queries have been largely disregarded in the research literature, which is surprising considering how common they are in practice. We explore how such queries appear in practice and present a method that can be used to significantly improve the asymptotic bounds of their state-of-the-art evaluation algorithms. Our experimental evaluation of these methods shows order-of-magnitude performance improvements.
阈值查询
阈值查询是一类重要的查询,它只需要计算或计数直至指定阈值的答案。据我们所知,阈值查询在研究文献中很大程度上被忽视了,考虑到它们在实践中是多么普遍,这是令人惊讶的。我们探索了这种查询在实践中是如何出现的,并提出了一种方法,可用于显着改善其最先进的评估算法的渐近边界。我们对这些方法的实验评估显示了数量级的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信