Clustering of static-adaptive correspondences for deformable object tracking

G. Nebehay, R. Pflugfelder
{"title":"Clustering of static-adaptive correspondences for deformable object tracking","authors":"G. Nebehay, R. Pflugfelder","doi":"10.1109/CVPR.2015.7298895","DOIUrl":null,"url":null,"abstract":"We propose a novel method for establishing correspondences on deformable objects for single-target object tracking. The key ingredient is a dissimilarity measure between correspondences that takes into account their geometric compatibility, allowing us to separate inlier correspondences from outliers. We employ both static correspondences from the initial appearance of the object as well as adaptive correspondences from the previous frame to address the stability-plasticity dilemma. The geometric dissimilarity measure enables us to also disambiguate keypoints that are difficult to match. Based on these ideas we build a keypoint-based tracker that outputs rotated bounding boxes. We demonstrate in a rigorous empirical analysis that this tracker outperforms the state of the art on a dataset of 77 sequences.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"187","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 187

Abstract

We propose a novel method for establishing correspondences on deformable objects for single-target object tracking. The key ingredient is a dissimilarity measure between correspondences that takes into account their geometric compatibility, allowing us to separate inlier correspondences from outliers. We employ both static correspondences from the initial appearance of the object as well as adaptive correspondences from the previous frame to address the stability-plasticity dilemma. The geometric dissimilarity measure enables us to also disambiguate keypoints that are difficult to match. Based on these ideas we build a keypoint-based tracker that outputs rotated bounding boxes. We demonstrate in a rigorous empirical analysis that this tracker outperforms the state of the art on a dataset of 77 sequences.
可变形目标跟踪的静态自适应对应的聚类
针对单目标目标跟踪,提出了一种在可变形对象上建立对应关系的新方法。关键因素是对应之间的不相似性度量,考虑到它们的几何兼容性,允许我们将早期对应与异常值分开。我们既采用对象初始外观的静态对应关系,也采用前一帧的自适应对应关系来解决稳定性-可塑性困境。几何不相似性度量还使我们能够消除难以匹配的关键点的歧义。基于这些想法,我们构建了一个基于关键点的跟踪器,输出旋转的边界框。我们在严格的实证分析中证明,该跟踪器在77个序列的数据集上优于最先进的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信