{"title":"Universal image steganalysis using singular values of DCT coefficients","authors":"M. Heidari, Shahrokh Gaemmaghami","doi":"10.1109/ISCISC.2013.6767340","DOIUrl":null,"url":null,"abstract":"We propose a blind image steganalysis method based on the Singular Value Decomposition (SVD) of the Discrete Cosine Transform (DCT) coefficients that are revisited in this work. We compute geometric mean, mean of log values, and statistical moments (mean, variance and skewness) of the SVDs of the DCT sub-blocks that are averaged over the whole image to construct a 480-element feature vector for steganalysis. These features are fed to a Support Vector Machine (SVM) classifier to discriminate between stego and cover images. Experimental results show that the proposed method outperforms most powerful steganalyzers when applied to some well-known steganography algorithms.","PeriodicalId":265985,"journal":{"name":"2013 10th International ISC Conference on Information Security and Cryptology (ISCISC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International ISC Conference on Information Security and Cryptology (ISCISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCISC.2013.6767340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We propose a blind image steganalysis method based on the Singular Value Decomposition (SVD) of the Discrete Cosine Transform (DCT) coefficients that are revisited in this work. We compute geometric mean, mean of log values, and statistical moments (mean, variance and skewness) of the SVDs of the DCT sub-blocks that are averaged over the whole image to construct a 480-element feature vector for steganalysis. These features are fed to a Support Vector Machine (SVM) classifier to discriminate between stego and cover images. Experimental results show that the proposed method outperforms most powerful steganalyzers when applied to some well-known steganography algorithms.