{"title":"Tomographic Schlieren imaging for measurement of beam pressure and intensity","authors":"T. Pitts, J. F. Greenleaf, Jian-yu Lu, R. Kinnick","doi":"10.1109/ULTSYM.1994.401910","DOIUrl":null,"url":null,"abstract":"The visualization of ultrasonic fields via acousto-optic interaction is an old technique. Shadowgraph and schlieren imaging produce data representing a line integral related to pressure and time-average intensity, respectively. These “projections” can be used in computed tomography. We have compared the reconstructed pressure distribution in a plane obtained via tomographic inversion with those obtained by mechanically scanning a 0.5 mm calibrated hydrophone through the same plane. Schlieren methods result in the reconstruction of a time average intensity approximation. Shadowgraph methods reconstruct pressure at a given point in time. The advantage of the tomographic methods is that they can be done quickly. A fully automated system could produce a three-dimensional image of an ultrasound beam in a few minutes","PeriodicalId":394363,"journal":{"name":"1994 Proceedings of IEEE Ultrasonics Symposium","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1994.401910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
The visualization of ultrasonic fields via acousto-optic interaction is an old technique. Shadowgraph and schlieren imaging produce data representing a line integral related to pressure and time-average intensity, respectively. These “projections” can be used in computed tomography. We have compared the reconstructed pressure distribution in a plane obtained via tomographic inversion with those obtained by mechanically scanning a 0.5 mm calibrated hydrophone through the same plane. Schlieren methods result in the reconstruction of a time average intensity approximation. Shadowgraph methods reconstruct pressure at a given point in time. The advantage of the tomographic methods is that they can be done quickly. A fully automated system could produce a three-dimensional image of an ultrasound beam in a few minutes