Identification Method of Abnormal Characteristic Data of Power Equipment based on Improved K-Means Algorithm

Huang Chao, D. Liang, Zhang Cheng, Rongtao Liao, Guo Yue, Dangdang Dai
{"title":"Identification Method of Abnormal Characteristic Data of Power Equipment based on Improved K-Means Algorithm","authors":"Huang Chao, D. Liang, Zhang Cheng, Rongtao Liao, Guo Yue, Dangdang Dai","doi":"10.1109/INCET57972.2023.10169986","DOIUrl":null,"url":null,"abstract":"Based on the improved k-means algorithm, this paper studies the identification of abnormal feature data of power equipment. Clustering according to the daily load curve can make a fine distinction between users. An accurate load pattern recognition model can also help grid workers to distinguish the load patterns of users, help power companies find their power laws, and provide a theoretical basis for load analysis, forecasting, decision-making and other work of the power system.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10169986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the improved k-means algorithm, this paper studies the identification of abnormal feature data of power equipment. Clustering according to the daily load curve can make a fine distinction between users. An accurate load pattern recognition model can also help grid workers to distinguish the load patterns of users, help power companies find their power laws, and provide a theoretical basis for load analysis, forecasting, decision-making and other work of the power system.
基于改进k -均值算法的电力设备异常特征数据识别方法
本文基于改进的k-means算法,对电力设备异常特征数据的识别进行了研究。根据日负载曲线聚类可以很好地区分用户。一个准确的负荷模式识别模型还可以帮助电网工作人员区分用户的负荷模式,帮助电力公司找到自己的用电规律,为电力系统的负荷分析、预测、决策等工作提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信