A novel hybrid evolutionary algorithm based on ACO and SA for distribution feeder reconfiguration with regard to DGs

J. Olamei, T. Niknam, A. Arefi, A. H. Mazinan
{"title":"A novel hybrid evolutionary algorithm based on ACO and SA for distribution feeder reconfiguration with regard to DGs","authors":"J. Olamei, T. Niknam, A. Arefi, A. H. Mazinan","doi":"10.1109/IEEEGCC.2011.5752495","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Ant Colony Optimization (ACO) and Simulated Annealing (SA), called ACO-SA, for distribution feeder reconfiguration (DFR) considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. The approach is tested on a real distribution feeder. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving DFR problem.","PeriodicalId":119104,"journal":{"name":"2011 IEEE GCC Conference and Exhibition (GCC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE GCC Conference and Exhibition (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2011.5752495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Ant Colony Optimization (ACO) and Simulated Annealing (SA), called ACO-SA, for distribution feeder reconfiguration (DFR) considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. The approach is tested on a real distribution feeder. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving DFR problem.
一种基于蚁群算法和蚁群算法的配电馈线重构混合进化算法
提出了一种基于蚁群算法和模拟退火算法相结合的高效混合进化优化算法,即ACO-SA,用于考虑分布式发电机组的配电馈线重构问题。由于分布式发电机组的私有制,采用基于成本的补偿方法鼓励分布式发电机组参与有功和无功发电。目标函数为次日dg与变电站母线(主母线)产生的电能之和。在实际配电馈线上对该方法进行了验证。仿真结果表明,所提出的进化优化算法具有较强的鲁棒性,适合求解DFR问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信