Joint subspace detection of hyperspectral targets

A. Schaum
{"title":"Joint subspace detection of hyperspectral targets","authors":"A. Schaum","doi":"10.1109/AERO.2004.1367963","DOIUrl":null,"url":null,"abstract":"Joint subspace detection (JSD) arises from a Bayesian formulation of the binary detection problem, as contrasted with the \"fixed but unknown parameter\" approach that generates the generalized likelihood ratio (GLR) test. The Bayesian philosophy allows the incorporation of prior knowledge gleaned from empirical experience into the design of a detection algorithm. The knowledge appears in the form of probability distributions for parameters considered deterministic in the GLR method. An example of this principle, called complementary subspace detection, has been applied to hyperspectral data and, with appropriate subspace selection, is shown to outperform the traditional detection techniques over a wide range of assumed prior knowledge of target distribution.","PeriodicalId":208052,"journal":{"name":"2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2004.1367963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

Joint subspace detection (JSD) arises from a Bayesian formulation of the binary detection problem, as contrasted with the "fixed but unknown parameter" approach that generates the generalized likelihood ratio (GLR) test. The Bayesian philosophy allows the incorporation of prior knowledge gleaned from empirical experience into the design of a detection algorithm. The knowledge appears in the form of probability distributions for parameters considered deterministic in the GLR method. An example of this principle, called complementary subspace detection, has been applied to hyperspectral data and, with appropriate subspace selection, is shown to outperform the traditional detection techniques over a wide range of assumed prior knowledge of target distribution.
高光谱目标联合子空间检测
联合子空间检测(JSD)源于二进制检测问题的贝叶斯公式,与生成广义似然比(GLR)检验的“固定但未知参数”方法形成对比。贝叶斯哲学允许将从经验经验中收集到的先验知识整合到检测算法的设计中。在GLR方法中,知识以确定性参数的概率分布形式出现。该原理的一个例子,称为互补子空间检测,已应用于高光谱数据,并且通过适当的子空间选择,在假定目标分布的广泛先验知识上优于传统的检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信