{"title":"The composite equipment for manifold of hypercentered planes, whose dimension coincides with dimension of generating plane","authors":"A. Vyalova, Y. Shevchenko","doi":"10.5922/0321-4796-2021-52-6","DOIUrl":null,"url":null,"abstract":"In n-dimensional projective space Pn a manifold , i. e., a family of pairs of planes one of which is a hyperplane in the other, is considered. A principal bundle arises over it, . A typical fiber is the stationarity subgroup of the generator of pair of planes: external plane and its multidimensional center — hyperplane. The principal bundle contains four factor-bundles.\n\nA fundamental-group connection is set by the Laptev — Lumiste method in the associated fibering. It is shown that the connection object contains four subobjects that define connections in the corresponding factor-bundles. It is proved that the curvature object of fundamental-group connection forms pseudotensor. It contains four subpseudotensors, which are curvature objects of the corresponding subconnections.\n\nThe composite equipment of the family of hypercentered planes set by means of a point lying in the plane and not belonging to its hypercenter and an (n – m – 1)-dimensional plane, which does not have common points with the hypercentered plane. It is proved, that composite equipment induces the fundamental-group connections of two types in the associated fibering.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2021-52-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In n-dimensional projective space Pn a manifold , i. e., a family of pairs of planes one of which is a hyperplane in the other, is considered. A principal bundle arises over it, . A typical fiber is the stationarity subgroup of the generator of pair of planes: external plane and its multidimensional center — hyperplane. The principal bundle contains four factor-bundles.
A fundamental-group connection is set by the Laptev — Lumiste method in the associated fibering. It is shown that the connection object contains four subobjects that define connections in the corresponding factor-bundles. It is proved that the curvature object of fundamental-group connection forms pseudotensor. It contains four subpseudotensors, which are curvature objects of the corresponding subconnections.
The composite equipment of the family of hypercentered planes set by means of a point lying in the plane and not belonging to its hypercenter and an (n – m – 1)-dimensional plane, which does not have common points with the hypercentered plane. It is proved, that composite equipment induces the fundamental-group connections of two types in the associated fibering.