The composite equipment for manifold of hypercentered planes, whose dimension coincides with dimension of generating plane

A. Vyalova, Y. Shevchenko
{"title":"The composite equipment for manifold of hypercentered planes, whose dimension coincides with dimension of generating plane","authors":"A. Vyalova, Y. Shevchenko","doi":"10.5922/0321-4796-2021-52-6","DOIUrl":null,"url":null,"abstract":"In n-dimensional projective space Pn a manifold , i. e., a family of pairs of planes one of which is a hyperplane in the other, is considered. A principal bundle arises over it, . A typi­cal fiber is the stationarity subgroup of the generator of pair of planes: external plane and its multidimensional center — hyperplane. The princi­pal bundle contains four factor-bundles.\n\nA fundamental-group connection is set by the Laptev — Lumiste method in the associated fibering. It is shown that the connection object contains four subobjects that define connections in the corresponding fac­tor-bundles. It is proved that the curvature object of fundamental-group connection forms pseudotensor. It contains four subpseudotensors, which are curvature objects of the corresponding subconnections.\n\nThe composite equipment of the family of hypercentered planes set by means of a point lying in the plane and not belonging to its hypercent­er and an (n – m – 1)-dimensional plane, which does not have common points with the hypercentered plane. It is proved, that composite equip­ment induces the fundamental-group connections of two types in the as­sociated fibering.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2021-52-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In n-dimensional projective space Pn a manifold , i. e., a family of pairs of planes one of which is a hyperplane in the other, is considered. A principal bundle arises over it, . A typi­cal fiber is the stationarity subgroup of the generator of pair of planes: external plane and its multidimensional center — hyperplane. The princi­pal bundle contains four factor-bundles. A fundamental-group connection is set by the Laptev — Lumiste method in the associated fibering. It is shown that the connection object contains four subobjects that define connections in the corresponding fac­tor-bundles. It is proved that the curvature object of fundamental-group connection forms pseudotensor. It contains four subpseudotensors, which are curvature objects of the corresponding subconnections. The composite equipment of the family of hypercentered planes set by means of a point lying in the plane and not belonging to its hypercent­er and an (n – m – 1)-dimensional plane, which does not have common points with the hypercentered plane. It is proved, that composite equip­ment induces the fundamental-group connections of two types in the as­sociated fibering.
一种尺寸与生成平面尺寸一致的超心平面流形复合设备
在n维射影空间Pn中,考虑一个流形,即一组平面对,其中一个平面对是另一个平面中的超平面。在它上面升起一束主束。典型的光纤是平面对——外平面及其多维中心超平面——的产生器的平稳性子群。主束包含四个因子束。在相关的光纤中,通过Laptev - Lumiste方法设置基本组连接。如图所示,连接对象包含四个子对象,它们在相应的因子包中定义连接。证明了基群连接的曲率对象形成伪张量。它包含四个子伪张量,它们是相应子连接的曲率对象。超中心平面族的复合设备,它是由一个点位于平面内,但不属于其超中心和一个(n - m - 1)维平面,且与超中心平面没有共同点。结果表明,复合设备在连接的光纤中产生了两种类型的基群连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信