{"title":"600-GHz-band Terahertz Imaging Scanner System with Enhanced Focal Depth","authors":"Yaheng Wang, L. Yi, M. Tonouchi, T. Nagatsuma","doi":"10.1109/MWP54208.2022.9997737","DOIUrl":null,"url":null,"abstract":"Long focal depth property of lens/mirrors is of practical importance in terahertz (THz) imaging systems where the sample position is usually uncertain. A 600-GHz-band THz imaging scanner system using an integrated off-axis parabolic (OAP) mirror is presented for this requirement. Both simulation and experiment results show that a spatial resolution of ~2 mm can be achieved at a focal distance of 100 mm. Moreover, owing to the astigmatism of the proposed OAP mirror, a long focal depth of ~170 mm was validated with the imaging experiment. Finally, a real imaging experiment was provided for recognizing the hidden metal object, which can be potentially used for imaging targets at different distances.","PeriodicalId":127318,"journal":{"name":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP54208.2022.9997737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Long focal depth property of lens/mirrors is of practical importance in terahertz (THz) imaging systems where the sample position is usually uncertain. A 600-GHz-band THz imaging scanner system using an integrated off-axis parabolic (OAP) mirror is presented for this requirement. Both simulation and experiment results show that a spatial resolution of ~2 mm can be achieved at a focal distance of 100 mm. Moreover, owing to the astigmatism of the proposed OAP mirror, a long focal depth of ~170 mm was validated with the imaging experiment. Finally, a real imaging experiment was provided for recognizing the hidden metal object, which can be potentially used for imaging targets at different distances.