A Comparative Study of Lossless Compression Algorithms on Multi-spectral Imager Data

M. Grossberg, I. Gladkova, S. Gottipati, M. Rabinowitz, P. Alabi, T. George, António Pacheco
{"title":"A Comparative Study of Lossless Compression Algorithms on Multi-spectral Imager Data","authors":"M. Grossberg, I. Gladkova, S. Gottipati, M. Rabinowitz, P. Alabi, T. George, António Pacheco","doi":"10.1117/12.821007","DOIUrl":null,"url":null,"abstract":"High resolution multi-spectral imagers are becoming increasingly important tools for studying and monitoring the earth. As much of the data from these multi-spectral imagers is used for quantitative analysis, the role of lossless compression is critical in the transmission, distribution, archiving, and management of the data. To evaluate the performance of various compression algorithms on multi-spectral images, we conducted statistical evaluation on datasets consisting of hundreds of granules from both geostationary and polar imagers. We broke these datasets up by different criteria such as hemisphere, season, and time-of-day in order to ensure the results are robust, reliable, and applicable for future imagers.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.821007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

High resolution multi-spectral imagers are becoming increasingly important tools for studying and monitoring the earth. As much of the data from these multi-spectral imagers is used for quantitative analysis, the role of lossless compression is critical in the transmission, distribution, archiving, and management of the data. To evaluate the performance of various compression algorithms on multi-spectral images, we conducted statistical evaluation on datasets consisting of hundreds of granules from both geostationary and polar imagers. We broke these datasets up by different criteria such as hemisphere, season, and time-of-day in order to ensure the results are robust, reliable, and applicable for future imagers.
多光谱成像仪数据无损压缩算法的比较研究
高分辨率多光谱成像仪正日益成为研究和监测地球的重要工具。由于这些多光谱成像仪的大部分数据用于定量分析,因此无损压缩在数据的传输、分发、存档和管理中起着至关重要的作用。为了评估各种压缩算法在多光谱图像上的性能,我们对来自地球静止和极地成像仪的数百个颗粒组成的数据集进行了统计评估。我们根据不同的标准(如半球、季节和一天中的时间)对这些数据集进行了分解,以确保结果稳健、可靠,并适用于未来的成像仪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信