Sentiment Classification of Russian Texts Using Automatically Generated Thesaurus

K. Lagutina, V. Larionov, V. Petryakov, N. Lagutina, I. Paramonov
{"title":"Sentiment Classification of Russian Texts Using Automatically Generated Thesaurus","authors":"K. Lagutina, V. Larionov, V. Petryakov, N. Lagutina, I. Paramonov","doi":"10.23919/FRUCT.2018.8588096","DOIUrl":null,"url":null,"abstract":"This paper is devoted to an approach for sentiment classification of Russian texts applying an automatic thesaurus of the subject area. This approach consists of a standard machine learning classifier and a procedure embedded into it, that uses thesaurus relationships for better sentiment analysis. The thesaurus is generated fully automatically and does not require expert’s involvement into classification process. Experiments conducted with the approach and four Russian-language text corpora, show effectiveness of thesaurus application to sentiment classification.","PeriodicalId":183812,"journal":{"name":"2018 23rd Conference of Open Innovations Association (FRUCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd Conference of Open Innovations Association (FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FRUCT.2018.8588096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper is devoted to an approach for sentiment classification of Russian texts applying an automatic thesaurus of the subject area. This approach consists of a standard machine learning classifier and a procedure embedded into it, that uses thesaurus relationships for better sentiment analysis. The thesaurus is generated fully automatically and does not require expert’s involvement into classification process. Experiments conducted with the approach and four Russian-language text corpora, show effectiveness of thesaurus application to sentiment classification.
使用自动生成词库的俄语文本情感分类
本文研究了一种基于主题领域自动词库的俄语文本情感分类方法。这种方法由一个标准的机器学习分类器和一个嵌入其中的程序组成,该程序使用同义词库关系进行更好的情感分析。同义词典是完全自动生成的,不需要专家参与分类过程。用该方法和四种俄文文本语料库进行了实验,验证了词库应用于情感分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信