Drone path optimization in complex environment based on Q-learning algorithm

El Mehdi Ben Laoula, Omar Elfahim, M. Youssfi, O. Bouattane
{"title":"Drone path optimization in complex environment based on Q-learning algorithm","authors":"El Mehdi Ben Laoula, Omar Elfahim, M. Youssfi, O. Bouattane","doi":"10.1109/ISCV54655.2022.9806077","DOIUrl":null,"url":null,"abstract":"Path planning of intelligent agents in an emergency context is one of the most popular issues within nowadays context. This work proposes an environment acquisition and a path optimization solution based on reinforcement learning. The proposed solution implements Q-Learning algorithm and enables the agent to choose the path that maximizes the reward and minimizes the penalty. When tested in an experiment grid and compared to other solutions the proposed solution proved to be more stable and more efficient.","PeriodicalId":426665,"journal":{"name":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCV54655.2022.9806077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Path planning of intelligent agents in an emergency context is one of the most popular issues within nowadays context. This work proposes an environment acquisition and a path optimization solution based on reinforcement learning. The proposed solution implements Q-Learning algorithm and enables the agent to choose the path that maximizes the reward and minimizes the penalty. When tested in an experiment grid and compared to other solutions the proposed solution proved to be more stable and more efficient.
基于q -学习算法的复杂环境下无人机路径优化
紧急情况下智能体的路径规划是当前环境下最受关注的问题之一。本文提出了一种基于强化学习的环境获取和路径优化解决方案。该解决方案采用Q-Learning算法,使智能体能够选择奖励最大化和惩罚最小化的路径。在实验网格中进行了测试,并与其他解决方案进行了比较,证明了该方案更稳定、更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信