RRAM based synaptic devices for neuromorphic visual systems

Jinfeng Kang, B. Gao, Peng Huang, Lifeng Liu, Xiaoyan Liu, H. Y. Yu, Shimeng Yu, H. Wong
{"title":"RRAM based synaptic devices for neuromorphic visual systems","authors":"Jinfeng Kang, B. Gao, Peng Huang, Lifeng Liu, Xiaoyan Liu, H. Y. Yu, Shimeng Yu, H. Wong","doi":"10.1109/ICDSP.2015.7252074","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing is an attractive computation paradigm with the features of massive parallelism, adaptivity to the complex input information, and tolerance to errors. As one of the most crucial components in a neuromorphic system, the electronic synapse requires high device integration density and low-energy consumption. Oxide-based resistive switching devices (RRAM) have emerged as the leading candidate to realize the synapse functions due to the extra-low energy loss per spike. This work will address the design and optimization of oxide-based RRAM synaptic devices and the impacts of the synaptic devices parameters on the performance of neuromorphic visual system. Possible solutions are also provided to suppress the intrinsic variation of the oxide-RRAM based synaptic devices to achieve high recognition accuracy and efficiency of neuromorphic visual systems.","PeriodicalId":216293,"journal":{"name":"2015 IEEE International Conference on Digital Signal Processing (DSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2015.7252074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Neuromorphic computing is an attractive computation paradigm with the features of massive parallelism, adaptivity to the complex input information, and tolerance to errors. As one of the most crucial components in a neuromorphic system, the electronic synapse requires high device integration density and low-energy consumption. Oxide-based resistive switching devices (RRAM) have emerged as the leading candidate to realize the synapse functions due to the extra-low energy loss per spike. This work will address the design and optimization of oxide-based RRAM synaptic devices and the impacts of the synaptic devices parameters on the performance of neuromorphic visual system. Possible solutions are also provided to suppress the intrinsic variation of the oxide-RRAM based synaptic devices to achieve high recognition accuracy and efficiency of neuromorphic visual systems.
神经形态视觉系统基于RRAM的突触装置
神经形态计算是一种极具吸引力的计算范式,具有大规模并行性、对复杂输入信息的适应性和容错性等特点。电子突触作为神经形态系统中最重要的组成部分之一,对器件集成密度要求高,对能量消耗要求低。基于氧化物的电阻开关器件(RRAM)由于其超低的能量损耗而成为实现突触功能的主要候选器件。本研究将探讨基于氧化物的RRAM突触装置的设计与优化,以及突触装置参数对神经形态视觉系统性能的影响。为抑制基于氧化物rram的突触装置的内在变异,实现神经形态视觉系统的高识别精度和效率提供了可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信