Data shuffling and statistical analysis on microarray data for gene selection: a comparative study on filtering methods

Z. Ding, Yanqing Zhang, Yichuan Zhao
{"title":"Data shuffling and statistical analysis on microarray data for gene selection: a comparative study on filtering methods","authors":"Z. Ding, Yanqing Zhang, Yichuan Zhao","doi":"10.1504/IJFIPM.2010.039119","DOIUrl":null,"url":null,"abstract":"Computational analysis have been broadly used to discover disease-relevant genes from microarray expression data. In this paper, we extend a traditional statistical metric to a second level to measure gene-disease relations, testing such relation whether can be replicated by randomly shuffling the gene expression data. The traditional metric can be considered as a first-level metric; the relevance of each gene is then verified through the second-level significance testing based on the first-level metric calculated on the original data and shuffled data. We show that this method can also produce high classification performance, compared with other filter-based methods.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2010.039119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Computational analysis have been broadly used to discover disease-relevant genes from microarray expression data. In this paper, we extend a traditional statistical metric to a second level to measure gene-disease relations, testing such relation whether can be replicated by randomly shuffling the gene expression data. The traditional metric can be considered as a first-level metric; the relevance of each gene is then verified through the second-level significance testing based on the first-level metric calculated on the original data and shuffled data. We show that this method can also produce high classification performance, compared with other filter-based methods.
基因选择微阵列数据的数据洗牌与统计分析:过滤方法的比较研究
计算分析已广泛用于从微阵列表达数据中发现疾病相关基因。在本文中,我们将传统的统计度量扩展到第二个层次来测量基因与疾病的关系,通过随机洗刷基因表达数据来检验这种关系是否可以复制。传统度量可以看作是一级度量;然后根据原始数据和洗牌数据计算的一级度量,通过二级显著性检验验证每个基因的相关性。与其他基于过滤器的方法相比,该方法也能产生较高的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信