K. Pan, Xueyan Tang, Wentong Cai, Suiping Zhou, Hanying Zheng
{"title":"Hierarchical interest management for distributed virtual environments","authors":"K. Pan, Xueyan Tang, Wentong Cai, Suiping Zhou, Hanying Zheng","doi":"10.1145/2486092.2486110","DOIUrl":null,"url":null,"abstract":"An Interest Management (IM) mechanism eliminates irrelevant status updates transmitted in Distributed Virtual Environments (DVE). This paper proposes a new hierarchical IM mechanism for DVEs. The hierarchical mechanism divides the virtual world into multiple levels of cells and keeps the relationship between an entity and an Area-Of-Interest (AOI) at a particular cell level according to their relative position. As their relative position changes, the relationship level is updated accordingly. Compared with the traditional area-based and cell-based mechanisms, the proposed hierarchical mechanism significantly reduces the communication bandwidth consumption of IM and thus considerably improves the scalability of DVEs. In addition, the proposed mechanism also has much lower computation cost than the traditional mechanisms and very acceptable storage requirement for its data structures.","PeriodicalId":115341,"journal":{"name":"Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486092.2486110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
An Interest Management (IM) mechanism eliminates irrelevant status updates transmitted in Distributed Virtual Environments (DVE). This paper proposes a new hierarchical IM mechanism for DVEs. The hierarchical mechanism divides the virtual world into multiple levels of cells and keeps the relationship between an entity and an Area-Of-Interest (AOI) at a particular cell level according to their relative position. As their relative position changes, the relationship level is updated accordingly. Compared with the traditional area-based and cell-based mechanisms, the proposed hierarchical mechanism significantly reduces the communication bandwidth consumption of IM and thus considerably improves the scalability of DVEs. In addition, the proposed mechanism also has much lower computation cost than the traditional mechanisms and very acceptable storage requirement for its data structures.