Learning Bayesian classifiers for a visual grammar

S. Aksoy, K. Koperski, C. Tusk, G. Marchisio, J. Tilton
{"title":"Learning Bayesian classifiers for a visual grammar","authors":"S. Aksoy, K. Koperski, C. Tusk, G. Marchisio, J. Tilton","doi":"10.1109/WARSD.2003.1295195","DOIUrl":null,"url":null,"abstract":"A challenging problem in image content extraction and classification is building a system that automatically learns high-level semantic interpretations of images. We describe a Bayesian framework for a visual grammar that aims to reduce the gap between low-level features and user semantics. Our approach includes learning prototypes of regions and their spatial relationships for scene classification. First, naive Bayes classifiers perform automatic fusion of features and learn models for region segmentation and classification using positive and negative examples for user-defined semantic land cover labels. Then, the system automatically learns how to distinguish the spatial relationships of these regions from training data and builds visual grammar models. Experiments using LANDSAT scenes show that the visual grammar enables creation of higher level classes that cannot be modeled by individual pixels or regions. Furthermore, learning of the classifiers requires only a few training examples.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A challenging problem in image content extraction and classification is building a system that automatically learns high-level semantic interpretations of images. We describe a Bayesian framework for a visual grammar that aims to reduce the gap between low-level features and user semantics. Our approach includes learning prototypes of regions and their spatial relationships for scene classification. First, naive Bayes classifiers perform automatic fusion of features and learn models for region segmentation and classification using positive and negative examples for user-defined semantic land cover labels. Then, the system automatically learns how to distinguish the spatial relationships of these regions from training data and builds visual grammar models. Experiments using LANDSAT scenes show that the visual grammar enables creation of higher level classes that cannot be modeled by individual pixels or regions. Furthermore, learning of the classifiers requires only a few training examples.
学习贝叶斯分类器的视觉语法
在图像内容提取和分类中,一个具有挑战性的问题是建立一个自动学习图像高级语义解释的系统。我们描述了一个可视化语法的贝叶斯框架,旨在减少低级特征和用户语义之间的差距。我们的方法包括学习用于场景分类的区域原型及其空间关系。首先,朴素贝叶斯分类器对自定义语义土地覆盖标签进行特征自动融合和学习模型,使用正反例进行区域分割和分类。然后,系统自动学习如何从训练数据中区分这些区域的空间关系,并建立视觉语法模型。使用LANDSAT场景进行的实验表明,视觉语法可以创建不能由单个像素或区域建模的更高级别的类。此外,学习分类器只需要少量的训练样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信