Eliminating External Factors with Variables Standardization for Monitoring Applications

Maxime Leiber, Y. Marnissi, S. Razakarivony, Dong Quan Vu, Mohammed El Badaoui
{"title":"Eliminating External Factors with Variables Standardization for Monitoring Applications","authors":"Maxime Leiber, Y. Marnissi, S. Razakarivony, Dong Quan Vu, Mohammed El Badaoui","doi":"10.1109/CAI54212.2023.00107","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel preprocessing method for normalizing the measured variables of a system, with respect to external conditions. Our approach transforms the measured quantities into corrected ones that capture the internal behavior of the system while eliminating the impact of external variables on this behavior. We demonstrate the effectiveness of our approach through an experiment focused on vibration health monitoring in aeronautics. This preprocessing technique enables the use of consistent data for analysis and prediction across different operating conditions and thus enhances the accuracy and reliability of system monitoring.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel preprocessing method for normalizing the measured variables of a system, with respect to external conditions. Our approach transforms the measured quantities into corrected ones that capture the internal behavior of the system while eliminating the impact of external variables on this behavior. We demonstrate the effectiveness of our approach through an experiment focused on vibration health monitoring in aeronautics. This preprocessing technique enables the use of consistent data for analysis and prediction across different operating conditions and thus enhances the accuracy and reliability of system monitoring.
用变量消除外部因素的监测应用标准化
本文提出了一种新的预处理方法,用于对外部条件下系统的测量变量进行归一化。我们的方法将测量的量转换为捕获系统内部行为的校正量,同时消除外部变量对该行为的影响。通过航空振动健康监测实验验证了该方法的有效性。这种预处理技术能够在不同的操作条件下使用一致的数据进行分析和预测,从而提高系统监测的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信