Semi-supervised intrusion detection via online laplacian twin support vector machine

Arezoo Mousavi, S. S. Ghidary, Zohre Karimi
{"title":"Semi-supervised intrusion detection via online laplacian twin support vector machine","authors":"Arezoo Mousavi, S. S. Ghidary, Zohre Karimi","doi":"10.1109/SPIS.2015.7422328","DOIUrl":null,"url":null,"abstract":"Network security has become one of the well-known concerns in the last decades. Machine learning techniques are robust methods in detecting malicious activities and network threats. Most previous works learn offline supervised classifiers while they require large amounts of labeled examples and also should update models because the data change over time in real world applications. To alleviate these problems, we propose a novel online version of laplacian twin support vector machine classifier, which can exploit the geometry information of the marginal distribution embedded in unlabeled data to construct a more accurate and faster semi-supervised classifier. The results of experiments on large network datasets show that Online Lap-TSVM combined by two nonparallel hyper planes improves the accuracy with the comparable computing time and storage to Lap-TSVM.","PeriodicalId":424434,"journal":{"name":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","volume":"4 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIS.2015.7422328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Network security has become one of the well-known concerns in the last decades. Machine learning techniques are robust methods in detecting malicious activities and network threats. Most previous works learn offline supervised classifiers while they require large amounts of labeled examples and also should update models because the data change over time in real world applications. To alleviate these problems, we propose a novel online version of laplacian twin support vector machine classifier, which can exploit the geometry information of the marginal distribution embedded in unlabeled data to construct a more accurate and faster semi-supervised classifier. The results of experiments on large network datasets show that Online Lap-TSVM combined by two nonparallel hyper planes improves the accuracy with the comparable computing time and storage to Lap-TSVM.
基于在线拉普拉斯双支持向量机的半监督入侵检测
在过去的几十年里,网络安全已经成为一个众所周知的问题。机器学习技术是检测恶意活动和网络威胁的强大方法。大多数以前的工作都是学习离线监督分类器,而它们需要大量的标记示例,并且还应该更新模型,因为在现实世界的应用中数据会随着时间的推移而变化。为了解决这些问题,我们提出了一种新的拉普拉斯双支持向量机分类器的在线版本,该分类器可以利用嵌入在未标记数据中的边缘分布的几何信息来构建更准确、更快的半监督分类器。在大型网络数据集上的实验结果表明,两个非并行超平面组合的在线Lap-TSVM在计算时间和存储空间相当的情况下提高了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信