QuickSort: Improved right-tail asymptotics for the limiting distribution, and large deviations (Extended Abstract)

J. A. Fill, Wei-Chun Hung
{"title":"QuickSort: Improved right-tail asymptotics for the limiting distribution, and large deviations (Extended Abstract)","authors":"J. A. Fill, Wei-Chun Hung","doi":"10.1137/1.9781611975505.9","DOIUrl":null,"url":null,"abstract":"We substantially refine asymptotic logarithmic upper bounds produced by Svante Janson (2015) on the right tail of the limiting QuickSort distribution function $F$ and by Fill and Hung (2018) on the right tails of the corresponding density $f$ and of the absolute derivatives of $f$ of each order. For example, we establish an upper bound on $\\log[1 - F(x)]$ that matches conjectured asymptotics of Knessl and Szpankowski (1999) through terms of order $(\\log x)^2$; the corresponding order for the Janson (2015) bound is the lead order, $x \\log x$. \nUsing the refined asymptotic bounds on $F$, we derive right-tail large deviation (LD) results for the distribution of the number of comparisons required by QuickSort that substantially sharpen the two-sided LD results of McDiarmid and Hayward (1996).","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611975505.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We substantially refine asymptotic logarithmic upper bounds produced by Svante Janson (2015) on the right tail of the limiting QuickSort distribution function $F$ and by Fill and Hung (2018) on the right tails of the corresponding density $f$ and of the absolute derivatives of $f$ of each order. For example, we establish an upper bound on $\log[1 - F(x)]$ that matches conjectured asymptotics of Knessl and Szpankowski (1999) through terms of order $(\log x)^2$; the corresponding order for the Janson (2015) bound is the lead order, $x \log x$. Using the refined asymptotic bounds on $F$, we derive right-tail large deviation (LD) results for the distribution of the number of comparisons required by QuickSort that substantially sharpen the two-sided LD results of McDiarmid and Hayward (1996).
快速排序:极限分布和大偏差的改进右尾渐近(扩展摘要)
我们对Svante Janson(2015)在极限快速排序分布函数$F$的右尾部以及Fill and Hung(2018)在相应密度$F$的右尾部以及每阶$F$的绝对导数的右尾部所产生的渐近对数上界进行了实质性的改进。例如,我们建立了$\log[1 - F(x)]$的上界,该上界通过$(\log x)^2$的阶项匹配Knessl和Szpankowski(1999)的猜想渐近性;Janson(2015)绑定的相应顺序是先导顺序,$x \log x$。使用F$上的精炼渐近界,我们得到了快速排序所需的比较次数分布的右尾大偏差(LD)结果,该结果大大提高了McDiarmid和Hayward(1996)的双边LD结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信