Support vector machine based method for identifying hard exudates in retinal images

Lili Xu, S. Luo
{"title":"Support vector machine based method for identifying hard exudates in retinal images","authors":"Lili Xu, S. Luo","doi":"10.1109/YCICT.2009.5382409","DOIUrl":null,"url":null,"abstract":"Hard exudates in retinal images are one of the most prevalent earliest signs of diabetic retinopathy. The accurate identification of hard exudates is of increasing importance in the early detection of diabetic retinopathy. In this paper, we present a novel method to identify hard exudates from digital retinal images. A feature combination based on stationary wavelet transform (SWT) and gray level co-occurrence matrix (GLCM) is used to characterize hard exudates candidates. An optimized support vector machine (SVM) with Gaussian radial basis function is employed as a classifier. A sample dataset consisting of 50 hard exudates candidates is used for identifying hard exudates. With the optimal SVM parameters, the classification accuracy of 84%, sensitivity of 88% and specificity of 80% are obtained.","PeriodicalId":138803,"journal":{"name":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2009.5382409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Hard exudates in retinal images are one of the most prevalent earliest signs of diabetic retinopathy. The accurate identification of hard exudates is of increasing importance in the early detection of diabetic retinopathy. In this paper, we present a novel method to identify hard exudates from digital retinal images. A feature combination based on stationary wavelet transform (SWT) and gray level co-occurrence matrix (GLCM) is used to characterize hard exudates candidates. An optimized support vector machine (SVM) with Gaussian radial basis function is employed as a classifier. A sample dataset consisting of 50 hard exudates candidates is used for identifying hard exudates. With the optimal SVM parameters, the classification accuracy of 84%, sensitivity of 88% and specificity of 80% are obtained.
基于支持向量机的视网膜图像硬渗出物识别方法
视网膜图像中的硬渗出物是糖尿病视网膜病变最常见的早期症状之一。硬渗出物的准确鉴别对糖尿病视网膜病变的早期诊断越来越重要。本文提出了一种从数字视网膜图像中识别硬渗出物的新方法。采用基于平稳小波变换(SWT)和灰度共生矩阵(GLCM)的特征组合来表征候选硬渗出物。采用基于高斯径向基函数的优化支持向量机作为分类器。使用由50个候选硬渗出物组成的样本数据集来识别硬渗出物。在最优SVM参数下,分类准确率为84%,灵敏度为88%,特异度为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信