An Extended Note on the Comparison-optimal Dual Pivot Quickselect

Daniel Krenn
{"title":"An Extended Note on the Comparison-optimal Dual Pivot Quickselect","authors":"Daniel Krenn","doi":"10.1137/1.9781611974775.11","DOIUrl":null,"url":null,"abstract":"In this note the precise minimum number of key comparisons any dual-pivot quickselect algorithm (without sampling) needs on average is determined. The result is in the form of exact as well as asymptotic formul\\ae{} of this number of a comparison-optimal algorithm. It turns out that the main terms of these asymptotic expansions coincide with the main terms of the corresponding analysis of the classical quickselect, but still---as this was shown for Yaroslavskiy quickselect---more comparisons are needed in the dual-pivot variant. The results are obtained by solving a second order differential equation for the generating function obtained from a recursive approach.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974775.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this note the precise minimum number of key comparisons any dual-pivot quickselect algorithm (without sampling) needs on average is determined. The result is in the form of exact as well as asymptotic formul\ae{} of this number of a comparison-optimal algorithm. It turns out that the main terms of these asymptotic expansions coincide with the main terms of the corresponding analysis of the classical quickselect, but still---as this was shown for Yaroslavskiy quickselect---more comparisons are needed in the dual-pivot variant. The results are obtained by solving a second order differential equation for the generating function obtained from a recursive approach.
关于比较最优双枢轴快速选择的扩展说明
在本文中,确定了任何双枢轴快速选择算法(不采样)平均需要的精确最小键比较次数。结果以精确的形式以及渐近的公式\ae{}的比较最优算法的这个数字。结果表明,这些渐近展开的主要项与经典快速选择的相应分析的主要项一致,但是——正如Yaroslavskiy快速选择所显示的那样——在双枢轴变体中需要进行更多的比较。结果是通过求解由递归方法得到的生成函数的二阶微分方程得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信