Generic Feature Extraction for Classification using Fuzzy C - Means Clustering

K. Srinivasa, A. Singh, A. Thomas, K. Venugopal, L. Patnaik
{"title":"Generic Feature Extraction for Classification using Fuzzy C - Means Clustering","authors":"K. Srinivasa, A. Singh, A. Thomas, K. Venugopal, L. Patnaik","doi":"10.1109/ICISIP.2005.1619409","DOIUrl":null,"url":null,"abstract":"Knowledge discovery and data mining (KDD) process includes preprocessing, transformation, data mining and knowledge extraction. The two important tasks of data mining are clustering and classification. In this paper, we propose a generic feature extraction for classification using fuzzy C-means (FCM) clustering. The raw data is preprocessed, normalized and then data points are clustered using the fuzzy C-means technique. Feature vectors for all the classes are generated by extracting the most relevant features from the corresponding clusters and used for further classification. Artificial neural network and support vector machines are used to perform the classification task. Experiments are conducted on four datasets and the accuracy obtained by performing specific feature extraction for a particular data set is compared with the generic feature extraction scheme. The algorithm performs relatively well with respect to classification results when compared with the specific feature extraction technique","PeriodicalId":261916,"journal":{"name":"2005 3rd International Conference on Intelligent Sensing and Information Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 3rd International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2005.1619409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Knowledge discovery and data mining (KDD) process includes preprocessing, transformation, data mining and knowledge extraction. The two important tasks of data mining are clustering and classification. In this paper, we propose a generic feature extraction for classification using fuzzy C-means (FCM) clustering. The raw data is preprocessed, normalized and then data points are clustered using the fuzzy C-means technique. Feature vectors for all the classes are generated by extracting the most relevant features from the corresponding clusters and used for further classification. Artificial neural network and support vector machines are used to perform the classification task. Experiments are conducted on four datasets and the accuracy obtained by performing specific feature extraction for a particular data set is compared with the generic feature extraction scheme. The algorithm performs relatively well with respect to classification results when compared with the specific feature extraction technique
基于模糊C均值聚类的分类通用特征提取
知识发现和数据挖掘(KDD)过程包括预处理、转换、数据挖掘和知识提取。数据挖掘的两个重要任务是聚类和分类。本文提出了一种基于模糊c均值(FCM)聚类的通用特征提取方法。对原始数据进行预处理、归一化,然后利用模糊c均值技术对数据点进行聚类。通过从相应的聚类中提取最相关的特征来生成所有类的特征向量,并用于进一步分类。使用人工神经网络和支持向量机来执行分类任务。在四个数据集上进行了实验,并将针对特定数据集进行特定特征提取所获得的精度与通用特征提取方案进行了比较。与特定特征提取技术相比,该算法在分类结果方面表现相对较好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信