Intrinsic modeling of radar antennas: From far-field to near-field conditions

S. Lambot, A. Tran, F. André
{"title":"Intrinsic modeling of radar antennas: From far-field to near-field conditions","authors":"S. Lambot, A. Tran, F. André","doi":"10.1109/IWAGPR.2013.6601520","DOIUrl":null,"url":null,"abstract":"We p resent an intrinsic way for modeling radar antennas operating in near-field conditions for wave propagation in planar layered media. Fundamental antenna features consist of an equivalent set of infinitesimal electric dipoles, field points and associated global reflection and transmission coefficient functions. These antenna characteristic functions permit to describe wave propagation between the radar reference plane and the equivalent source dipoles and field points. Near-field antenna-medium coupling is inherently accounted for and the antenna characteristics do not depend on the medium. We show an example of application in which the dielectric permittivity of a sand subject to a range of water contents is estimated from measurements collected with a vector network analyzer connected to a Vivaldi antenna. A very close agreement between the measurements and the model was obtained and the retrieved permittivities were very well consistent with the corresponding water contents. The proposed method shows great promise for digital soil mapping using ground-penetrating radar (GPR) and non-destructive testing of materials.","PeriodicalId":257117,"journal":{"name":"2013 7th International Workshop on Advanced Ground Penetrating Radar","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 7th International Workshop on Advanced Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2013.6601520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We p resent an intrinsic way for modeling radar antennas operating in near-field conditions for wave propagation in planar layered media. Fundamental antenna features consist of an equivalent set of infinitesimal electric dipoles, field points and associated global reflection and transmission coefficient functions. These antenna characteristic functions permit to describe wave propagation between the radar reference plane and the equivalent source dipoles and field points. Near-field antenna-medium coupling is inherently accounted for and the antenna characteristics do not depend on the medium. We show an example of application in which the dielectric permittivity of a sand subject to a range of water contents is estimated from measurements collected with a vector network analyzer connected to a Vivaldi antenna. A very close agreement between the measurements and the model was obtained and the retrieved permittivities were very well consistent with the corresponding water contents. The proposed method shows great promise for digital soil mapping using ground-penetrating radar (GPR) and non-destructive testing of materials.
雷达天线的固有建模:从远场到近场条件
我们提出了一种模拟在近场条件下工作的雷达天线在平面层状介质中的波传播的固有方法。天线的基本特征由一组等效的无限小电偶极子、场点和相关的全局反射和透射系数函数组成。这些天线特征函数允许描述波在雷达参考平面和等效源偶极子和场点之间的传播。近场天线-介质耦合是固有的考虑因素,天线特性不依赖于介质。我们展示了一个应用实例,其中根据连接到维瓦尔第天线的矢量网络分析仪收集的测量数据估计了沙子的介电常数。测量结果与模型非常吻合,所测得的介电常数与相应的含水量非常吻合。该方法在利用探地雷达(GPR)进行数字土壤制图和材料无损检测方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信