Estimating recombination rate distribution by optimal quantization

Mingzhou Song, S. Boissinot, R. Haralick, I. T. Phillips
{"title":"Estimating recombination rate distribution by optimal quantization","authors":"Mingzhou Song, S. Boissinot, R. Haralick, I. T. Phillips","doi":"10.1109/CSB.2003.1227346","DOIUrl":null,"url":null,"abstract":"We obtain recombination rate distribution functions for all human chromosomes using an optimal quantization method. This nonparametric method allows us to control over-/under-fitting. The piece-wise constant recombination rate distribution functions are convenient to store and retrieve. Our experimental results showed more abrupt distribution functions than two recently published results. In the previous results, the over-/under-fitting issues were not addressed explicitly. Our estimation had greater log likelihood over a previous result using Parzen window. It suggests that the optimal quantization technique might be of great advantage for estimation of other genomic feature distributions.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We obtain recombination rate distribution functions for all human chromosomes using an optimal quantization method. This nonparametric method allows us to control over-/under-fitting. The piece-wise constant recombination rate distribution functions are convenient to store and retrieve. Our experimental results showed more abrupt distribution functions than two recently published results. In the previous results, the over-/under-fitting issues were not addressed explicitly. Our estimation had greater log likelihood over a previous result using Parzen window. It suggests that the optimal quantization technique might be of great advantage for estimation of other genomic feature distributions.
最优量化估计重组率分布
我们用最优量化方法得到了所有人类染色体的重组率分布函数。这种非参数方法允许我们控制过拟合/欠拟合。分段常数复合率分布函数便于存储和检索。我们的实验结果比最近发表的两个结果显示了更多的突变分布函数。在之前的结果中,没有明确解决过/欠拟合问题。我们的估计比以前使用Parzen窗口的结果有更大的对数似然。这表明最优量化技术可能对其他基因组特征分布的估计有很大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信