Proof of hidden node number and experiments on RBF network for well log data inversion

Kou-Yuan Huang, Liang C. Shen, Jiun-Der You, Li-Sheng Weng
{"title":"Proof of hidden node number and experiments on RBF network for well log data inversion","authors":"Kou-Yuan Huang, Liang C. Shen, Jiun-Der You, Li-Sheng Weng","doi":"10.1109/IGARSS.2016.7729721","DOIUrl":null,"url":null,"abstract":"In the multilayer perceptron (MLP), there was a theorem about the maximum number of separable regions (M) given the number of hidden nodes (H) in the input d-dimensional space. We propose a recurrence relation to prove the theorem using the expansion of recurrence relation instead of proof by induction. We use three-layer radial basis function net (RBF) on the well log data inversion to test the number of hidden nodes determined by the theorem. The three-layer RBF has more nonlinear mapping. In the experiments, we have 31 simulated well log data. 25 well log data are used for training, and 6 are for testing. The experimental results can support the number of hidden nodes determined by the theorem.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7729721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the multilayer perceptron (MLP), there was a theorem about the maximum number of separable regions (M) given the number of hidden nodes (H) in the input d-dimensional space. We propose a recurrence relation to prove the theorem using the expansion of recurrence relation instead of proof by induction. We use three-layer radial basis function net (RBF) on the well log data inversion to test the number of hidden nodes determined by the theorem. The three-layer RBF has more nonlinear mapping. In the experiments, we have 31 simulated well log data. 25 well log data are used for training, and 6 are for testing. The experimental results can support the number of hidden nodes determined by the theorem.
基于RBF网络的隐节点数证明及测井数据反演实验
在多层感知器(MLP)中,存在一个关于给定输入d维空间中隐藏节点数(H)的最大可分离区域数(M)的定理。我们提出了一个递归关系,用递归关系的展开来证明定理,而不是用归纳法证明。利用三层径向基函数网(RBF)进行测井数据反演,检验由该定理确定的隐节点数。三层RBF具有更多的非线性映射。在实验中,我们模拟了31口测井资料。25口测井资料用于训练,6口测井资料用于测试。实验结果可以支持定理所确定的隐藏节点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信